27 research outputs found

    Brain phospholipid precursors administered post-injury reduce tissue damage and improve neurological outcome in experimental traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) leads to cellular loss, destabilisation of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PL), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesised that supporting PL synthesis post-injury could improve outcome after TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of phospholipids and available for clinical use. The multi-nutrient Fortasyn¼ Connect (FC) contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, co-factors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis after TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients, is safe and well-tolerated, which would enable rapid clinical exploration in TBI

    Znf202 Affects High Density Lipoprotein Cholesterol Levels and Promotes Hepatosteatosis in Hyperlipidemic Mice

    Get PDF
    Background: The zinc finger protein Znf202 is a transcriptional suppressor of lipid related genes and has been linked to hypoalphalipoproteinemia. A functional role of Znf202 in lipid metabolism in vivo still remains to be established. Methodology and Principal Findings: We generated mouse Znf202 expression vectors, the functionality of which was established in several in vitro systems. Next, effects of adenoviral znf202 overexpression in vivo were determined in normo- as well as hyperlipidemic mouse models. Znf202 overexpression in mouse hepatoma cells mhAT3F2 resulted in downregulation of members of the Apoe/c1/c2 and Apoa1/c3/a4 gene cluster. The repressive activity of Znf202 was firmly confirmed in an apoE reporter assay and Znf202 responsive elements within the ApoE promoter were identified. Adenoviral Znf202 transfer to Ldlr-/- mice resulted in downregulation of apoe, apoc1, apoa1, and apoc3 within 24 h after gene transfer. Interestingly, key genes in bile flux (abcg5/8 and bsep) and in bile acid synthesis (cyp7a1) were also downregulated. At 5 days post-infection, the expression of the aforementioned genes was normalized, but mice had developed severe hepatosteatosis accompanied by hypercholesterolemia and hypoalphalipoproteinemia. A much milder phenotype was observed in wildtype mice after 5 days of hepatic Znf202 overexpression. Interestingly and similar to Ldl-/- mice, HDL-cholesterol levels in wildtype mice were lowered after hepatic Znf202 overexpression. Conclusion/Significance: Znf202 overexpression in vivo reveals an important role of this transcriptional regulator in liver lipid homeostasis, while firmly establishing the proposed key role in the control of HDL levels

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    A multi nutrient concept to enhance synapse formation and function: science behind a medical food for Alzheimer’s disease

    No full text
    Alzheimer’s Disease (AD) is the leading cause of dementia. Epidemiological studies suggest that AD is linked with poor status of nutrients including DHA, B-vitamins and the vitamins E and C. Ongoing neurodegeneration, particularly synaptic loss, leads to the classical clinical features of AD namely, memory impairment, language deterioration, and executive and visuospatial dysfunction. The main constituents of neural and synaptic membranes are phospholipids. Supplemenation of animals with three dietary precursors of phospholipids namely, DHA, uridine monophosphate and choline, results in increased levels of brain phospholipids, synaptic proteins, neurite outgrowth, dendritic spines formation (i.e. the anatomical precursors of new synapses) and an improvement in learning and memory. Other nutrients act as co-factors in the synthesis pathway of neuronal membranes. For example B-vitamins are involved in methylation processes, thereby enhancing the availability of choline as a synaptic membrane precursor. A multi-nutrient concept that includes these nutrients may improve membrane integrity, thereby influencing membrane-dependent processes such as receptor function and amyloid precursor protein (APP) processing, as shown by reduced amyloid production and amyloid ÎČ plaque burden, as well as toxicity. Together, these insights provided the basis for the development of a medical food for patients with AD, SouvenaidÂź, containing a specific combination of nutrients (Fortasynℱ Connect) and designed to enhance synapse formation in AD. The effect of Souvenaid on memory and cognitive performance was recently assessed in a proof-of-concept study, SOUVENIR I, with 212 drug-naĂŻve mild AD patients (MMSE 20-26). This proof-of-concept study demonstrated that oral nutritional supplementation with SouvenaidÂź for 12 weeks improves memory in patients with mild AD. To confirm and extend these findings, we have designed and initiated three additional studies. Two of these studies will be completed in 2011; Souvenir II, a 24-week European study, with 259 drug-naĂŻve mild AD patients (MMSE≄20) and S-Connect, another 24-week study, with 527 mild-tomoderate AD patients (MMSE 14-24) using AD medication conducted in the US. The third is the EU-funded LipiDiDiet study, a 24-month study, which will enrol 300 people with prodromal AD to assess the effect on memory performance

    A multi nutrient concept to enhance synapse formation and function: science behind a medical food for Alzheimer’s disease

    No full text
    Alzheimer’s Disease (AD) is the leading cause of dementia. Epidemiological studies suggest that AD is linked with poor status of nutrients including DHA, B-vitamins and the vitamins E and C. Ongoing neurodegeneration, particularly synaptic loss, leads to the classical clinical features of AD namely, memory impairment, language deterioration, and executive and visuospatial dysfunction. The main constituents of neural and synaptic membranes are phospholipids. Supplemenation of animals with three dietary precursors of phospholipids namely, DHA, uridine monophosphate and choline, results in increased levels of brain phospholipids, synaptic proteins, neurite outgrowth, dendritic spines formation (i.e. the anatomical precursors of new synapses) and an improvement in learning and memory. Other nutrients act as co-factors in the synthesis pathway of neuronal membranes. For example B-vitamins are involved in methylation processes, thereby enhancing the availability of choline as a synaptic membrane precursor. A multi-nutrient concept that includes these nutrients may improve membrane integrity, thereby influencing membrane-dependent processes such as receptor function and amyloid precursor protein (APP) processing, as shown by reduced amyloid production and amyloid ÎČ plaque burden, as well as toxicity. Together, these insights provided the basis for the development of a medical food for patients with AD, SouvenaidÂź, containing a specific combination of nutrients (Fortasynℱ Connect) and designed to enhance synapse formation in AD. The effect of Souvenaid on memory and cognitive performance was recently assessed in a proof-of-concept study, SOUVENIR I, with 212 drug-naĂŻve mild AD patients (MMSE 20-26). This proof-of-concept study demonstrated that oral nutritional supplementation with SouvenaidÂź for 12 weeks improves memory in patients with mild AD. To confirm and extend these findings, we have designed and initiated three additional studies. Two of these studies will be completed in 2011; Souvenir II, a 24-week European study, with 259 drug-naĂŻve mild AD patients (MMSE≄20) and S-Connect, another 24-week study, with 527 mild-tomoderate AD patients (MMSE 14-24) using AD medication conducted in the US. The third is the EU-funded LipiDiDiet study, a 24-month study, which will enrol 300 people with prodromal AD to assess the effect on memory performance

    Association of the APOLIPOPROTEIN A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia

    No full text
    The APOLIPOPROTEIN (APO)A1/C3/A4/A5 gene cluster on chromosome 11 has been hypothesized to be a modifier of plasma triglycerides in FCH. In the present study, we extended previous association analyses of the gene cluster to include APOA5, a newly discovered member of the cluster. Eight SNPs across the APOA1/C3/A4/A5 gene region were analyzed in 78 FCH probands and their normolipidemic spouses as well as in 27 Dutch FCH families. Of the individual SNPs tested in the case-control panel, the strongest evidence of association was obtained with SNPs in APOA1 (P=0.001) and APOA5 (P=0.001). A single haplotype defined by a missense mutation in APOA5 was enriched 3-fold in FCH probands when compared with the normolipidemic spouses (P=0.001) and a second haplotype was significantly enriched in the spouses (P=0.001). Family-based tests also indicated significant association of triglyceride levels and LDL particle size with the investigated SNPs of APOC3 and APOA5. These findings suggest that genetic variation in the APOA1/C3/A4/A5 gene cluster acts as a modifier of plasma triglyceride levels and LDL particle size within FCH families and furthermore indicate that a number of haplotypes may contribute to FC
    corecore