2,583 research outputs found
The accretion environment in Vela X-1 during a flaring period using XMM-Newton
We present analysis of 100 ks contiguous XMM-Newton data of the prototypical
wind accretor Vela X-1. The observation covered eclipse egress between orbital
phases 0.134 and 0.265, during which a giant flare took place, enabling us to
study the spectral properties both outside and during the flare. This giant
flare with a peak luminosity of erg
s allows estimates of the physical parameters of the accreted structure
with a mass of g.
We have been able to model several contributions to the observed spectrum
with a phenomenological model formed by three absorbed power laws plus three
emission lines. After analysing the variations with orbital phase of the column
density of each component, as well as those in the Fe and Ni fluorescence
lines, we provide a physical interpretation for each spectral component.
Meanwhile, the first two components are two aspects of the principal accretion
component from the surface of the neutron star, and the third component seems
to be the \textit{X-ray light echo} formed in the stellar wind of the
companion.Comment: Accepted. Astronomy and Astrophysics, 201
Teaching computational thinking to space science students
Computational thinking is a key skill for space science graduates, who must apply advanced problem-solving skills to model complex systems, analyse big data sets, and develop control software for mission-critical space systems. We describe our work using Design Thinking to understand the challenges that students face in learning these skills. In the MSc Space Science & Technology at University College Dublin, we have used insights from this process to develop new teaching strategies, including improved assessment rubrics, supported by workshops promoting collaborative programming techniques. We argue that postgraduate- level space science courses play a valuable role in developing more advanced computational skills in early-career space scientists
Assessment of E-Senses Performance through Machine Learning Models for Colombian Herbal Teas Classification
This paper describes different E-Senses systems, such as Electronic Nose, Electronic Tongue, and Electronic Eyes, which were used to build several machine learning models and assess their performance in classifying a variety of Colombian herbal tea brands such as Albahaca, Frutos Verdes, Jaibel, Toronjil, and Toute. To do this, a set of Colombian herbal tea samples were previously acquired from the instruments and processed through multivariate data analysis techniques (principal component analysis and linear discriminant analysis) to feed the support vector machine, K-nearest neighbors, decision trees, naive Bayes, and random forests algorithms. The results of the E-Senses were validated using HS-SPME-GC-MS analysis. The best machine learning models from the different classification methods reached a 100% success rate in classifying the samples. The proposal of this study was to enhance the classification of Colombian herbal teas using three sensory perception systems. This was achieved by consolidating the data obtained from the collected samples
A mixed finite element method for nonlinear diffusion equations
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model
Timing variability of Vela X-1 during a bright flare
The X-ray Universe 2014, edited by Jan-Uwe Ness. Online at http://www.cosmos.esa.int/web/xmm-newton/2014-symposium/, id.130We present an in-depth analysis of the temporal behaviour of the HMXB Vela X-1 which exhibited strongly varying flux levels during an observation by XMM-Newton. During the 100 ks observation the source went from being in a highly absorbed initial state, to one of increased activity which was followed by a giant X-ray flare, before finally reaching a settled state with low absorption. The lower absorption state allows the normally absorbed pulse profile below 1 keV to be studied. Vela X-1 also showed multiple changes in the structure of the pulse profile including a phase lag with the harder photons leading the softer ones. A change in the pulse period, significant at approximately the 2Ï level, was observed at the beginning of the powerful flare and is likely related to the large accreted mass. For comparison purposes, an earlier XMM-Newton observation in a lower active state is used to put the variations in pulse profile and phase lag in context
Peripheral Inflammatory Indexes Neutrophil/Lymphocyte Ratio (NLR) and Red Cell Distribution Width (RDW) as Prognostic Biomarkers in Advanced Solitary Fibrous Tumour (SFT) Treated with Pazopanib
Simple Summary Pazopanib treatment in advanced solitary fibrous tumour patients, assessed in the prospective GEIS-32 phase II clinical trial, has shown longer progression-free survival and overall survival versus chemotherapy treatment in control patients. In recent years, the interest in the prognostic and predictive value of different peripheral inflammatory indexes, such as neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and red cell distribution width, has been increased in sarcomas, showing significant results in different soft tissue sarcomas. However, they have not been previously analysed in solitary fibrous tumour (SFT) patients. These indexes were retrospectively analysed in the typical- and malignant-SFT cohorts treated with pazopanib of the GEIS-32 trial to evaluate their predictive or prognostic value. Pazopanib was assessed prospectively in the GEIS-32 phase II study (NCT02066285) on advanced solitary fibrous tumour (SFT), resulting in a longer progression-free survival (PFS) and overall survival (OS) compared with historical controls treated with chemotherapy. A retrospective analysis of peripheral inflammatory indexes in patients enrolled into GEIS-32 was performed to evaluate their prognostic and predictive value. Patients received pazopanib 800 mg/day as the first antiangiogenic line. The impacts of baseline neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and red cell distribution width (RDW) on PFS, OS, and Choi response were evaluated by univariate and multivariate analysis. Metastasis-free interval (MFI), mitotic count, and ECOG were also included as potential prognostic factors. Sixty-seven SFT patients, enrolled in this study, showed a median age of 63 years and a female/male distribution of 57/43. The median follow-up from treatment initiation was 16.8 months. High baseline NLR, PLR, and standardised RDW were significantly associated with worse PFS and OS. NLR, RDW, MFI, and mitotic count were independent variables for PFS, while RDW and ECOG were independent for OS. Further, NLR and mitotic count were independent factors for Choi response. High baseline NLR and RDW values were independent prognostic biomarkers for worse outcome in advanced SFT patients treated with pazopanib
Transport coefficients for inelastic Maxwell mixtures
The Boltzmann equation for inelastic Maxwell models is used to determine the
Navier-Stokes transport coefficients of a granular binary mixture in
dimensions. The Chapman-Enskog method is applied to solve the Boltzmann
equation for states near the (local) homogeneous cooling state. The mass, heat,
and momentum fluxes are obtained to first order in the spatial gradients of the
hydrodynamic fields, and the corresponding transport coefficients are
identified. There are seven relevant transport coefficients: the mutual
diffusion, the pressure diffusion, the thermal diffusion, the shear viscosity,
the Dufour coefficient, the pressure energy coefficient, and the thermal
conductivity. All these coefficients are {\em exactly} obtained in terms of the
coefficients of restitution and the ratios of mass, concentration, and particle
sizes. The results are compared with known transport coefficients of inelastic
hard spheres obtained analytically in the leading Sonine approximation and by
means of Monte Carlo simulations. The comparison shows a reasonably good
agreement between both interaction models for not too strong dissipation,
especially in the case of the transport coefficients associated with the mass
flux.Comment: 9 figures, to be published in J. Stat. Phy
Immunoassay for SARS-CoV-2 Humoral Response Monitorization: A Study of the Antibody Response in COVID-19 Patients with Different Clinical Profiles during the First and Second Waves in Cadiz, Spain
There is still a long way ahead regarding the COVID-19 pandemic, since emerging waves
remain a daunting challenge to the healthcare system. For this reason, the development of new
preventive tools and therapeutic strategies to deal with the disease have been necessary, among
which serological assays have played a key role in the control of COVID-19 outbreaks and vaccine
development. Here, we have developed and evaluated an immunoassay capable of simultaneously
detecting multiple IgG antibodies against different SARS-CoV-2 antigens through the use of Bio-
PlexTM technology. Additionally, we have analyzed the antibody response in COVID-19 patients with
different clinical profiles in Cadiz, Spain. The multiplex immunoassay presented is a high-throughput
and robust immune response monitoring tool capable of concurrently detecting anti-S1, anti-NC
and anti-RBD IgG antibodies in serum with a very high sensitivity (94.34â97.96%) and specificity
(91.84â100%). Therefore, the immunoassay proposed herein may be a useful monitoring tool for
individual humoral immunity against SARS-CoV-2, as well as for epidemiological surveillance.
In addition, we show the values of antibodies against multiple SARS-CoV-2 antigens and their
correlation with the different clinical profiles of unvaccinated COVID-19 patients in Cadiz, Spain,
during the first and second waves of the pandemic.Project grant number COV20-00173 of the 2020 Emergency Call for Research Projects about the SARS-CoV-2 virus and the COVID-19 disease of the Institute of Health âCarlos IIIâ from the Spanish Ministry of Science and Innovation; Project grant number PECART-0096-2020, ConsejerĂa de Salud y Familias, Junta de AndalucĂa, Spain
Thermal characterization testing of a robust and reliable thermal knife HDRM (Hold Down and Release Mechanism) for CubeSat deployables
Thermal knife HDRMs (Hold Down and Release Mechanisms) are commonly used in CubeSats and other small satellites. However, detailed information on proven designs is difficult to find. Design of a robust and reliable mechanism can present technical challenges which may only become apparent during testing, and often only when tested in a space representative environment. A custom thermal knife HDRM was designed and built for the antenna deployment module of EIRSAT-1 to deploy four coil spring antenna elements, but the same or a similar design could be repurposed quite easily to release a wide range of CubeSat deployables. In this design resistors are used to cut dyneema lines. For robustness and reliability, the thermal response of the mechanism must be well understood. To reach the melting point of the dyneema (150C) the power dissipated in the resistors must often exceed the maximum rated value. Therefore, choosing the operating current and the burn time is a careful trade-off between ensuring that the resistor reliably cuts the dyneema line and ensuring that the resistor, solder joints, PCB and nearby components are not damaged by the high temperatures. These choices are further complicated by the requirement that the mechanism operates over a range of temperatures. A thermal vacuum test campaign was carried out to better understand and characterise the thermal behaviour of the EIRSAT-1 mechanism. For the test a model of the mechanism was built with several temperature sensors installed. Two of these sensors were installed directly on the body of the resistors using a thermally conductive epoxy. Burn tests were performed in vacuum at temperatures between -37C and +56C. The test shows many interesting results including the effect of the dyneema lines on the thermal response, the possibility of desoldering the burn resistors and a comparison between the performance at ambient and vacuum conditions. Finally, a summary is given of the key technical challenges associated with this type of mechanism along with some recommendations to help make future designs more robust and reliable
- âŠ