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The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes
transport coefficients of a granular binary mixture in d dimensions. The Chapman-Enskog method
is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state.
The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the
hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven
relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion, the
shear viscosity, the Dufour coefficient, the pressure energy coefficient, and the thermal conductivity.
All these coefficients are exactly obtained in terms of the coefficients of restitution and the ratios of
mass, concentration, and particle sizes. The results are compared with known transport coefficients
of inelastic hard spheres obtained analytically in the leading Sonine approximation and by means
of Monte Carlo simulations. The comparison shows a reasonably good agreement between both
interaction models for not too strong dissipation, especially in the case of the transport coefficients
associated with the mass flux.

KEY WORDS: Navier-Stokes transport coefficients; Granular mixtures; Inelastic Maxwell mod-
els; Boltzmann equation.
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I. INTRODUCTION

The evaluation of the transport coefficients from the Boltzmann equation for inelastic hard spheres (IHS) is quite
involved. In fact, to get explicit results one usually considers the leading order in a Sonine polynomial expansion of
the velocity distribution function. These difficulties increase when one considers multicomponent systems since not
only the number of transport coefficients is larger than for a single gas but they are also functions of more parameters
such as composition, masses, sizes, and the coefficients of restitution. As in the elastic case, a possible way to partially
overcome these problems is to consider other interaction models that simplify the complex mathematical structure
of the Boltzmann collision integrals for IHS. For this reason, the so-called inelastic Maxwell models (IMM) have
been widely used in the past few years as a toy model to characterize the influence of the inelasticity of collisions
on the physical properties of granular fluids. The IMM share with elastic Maxwell molecules the property that
the collision rate is velocity independent but, on the other hand, their collision rules are the same as for IHS. In
this sense, although these IMM do not correspond to any microscopic potential interaction, it has been shown by
several authors1,2,3,4,5,6,7,8,9 that the cost of sacrificing physical realism is in part compensated by the amount of exact
analytical results.

Most of the studies carried out by considering IMM have been devoted to homogeneous states, especially in the
analysis of the overpopulated high energy tails.4,6,7,8,10,11 However, much less is known in the case of inhomogeneous

situations and, more specifically, on the dependence of the transport coefficients on dissipation. For a monocomponent
granular gas subjected to simple shear flow, the IMM have been used to calculate the rheological properties (shear and
normal stresses) in three dimensions.12 More recently, this study has been extended13 to multicomponent systems,
the exact results of IMM showing a close agreement with those obtained analytically for IHS in the first Sonine
approximation14 and by means of Monte Carlo simulations.14,15 All these results are restricted to steady shear flow
problems without any limitation on the strength of the shear rate. For general inhomogeneous problems and in the case
of a monocomponent gas, the Boltzmann equation for IMM has been solved16 from the Chapman-Enskog method17 for
states near the (local) homogeneous cooling state. Explicit expressions of the Navier-Stokes transport coefficients of
IMM in d dimensions have been obtained for unforced systems as well as for systems driven by thermostats. In contrast
to the findings of Ref. 13, the comparison with the transport coefficients of IHS18,19 shows that their dependence on
inelasticity is captured by the IMM only in a mild qualitative way. This fact stimulates the determination of the exact
expressions of the transport coefficients for inelastic granular mixtures.

The goal of this paper is to derive the hydrodynamic equations for a d-dimensional binary mixture of inelastic
Maxwell gases at low-density. As in the single gas case,16 a normal solution to the coupled set of Boltzmann equations
for the two species is obtained by using the standard Chapman-Enskog method17 conveniently generalized to inelastic
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collisions. In the first order of the spatial gradients of the hydrodynamic fields, we get the corresponding Navier-Stokes
hydrodynamic equations with explicit expressions for the relevant transport coefficients of the mixture. For molecular
fluid mixtures, the specific set of gradients contributing to each flux is restricted by fluid symmetry, time reversal
invariance (Onsager relations), and the form of entropy production.20 However, in the case of inelastic collisions, only
fluid symmetry holds and so there is more flexibility in representing the fluxes and identifying the corresponding
transport coefficients. In the case of the pressure tensor, fluid symmetry considerations implies that its form to first
order in the gradients is the same as for the monocomponent gas. In the case of mass and heat fluxes, several different
(but equivalent) choices of hydrodynamic fields can be used and some care must be taken when comparing transport
coefficients coming from different representations. As in the case of IHS,21 we take the gradients of the mole fraction,
the (hydrostatic) pressure, the temperature, and the flow velocity as the relevant ones. As a consequence, in this
representation there are seven independent scalar transport coefficients: the mutual diffusion, the pressure diffusion
and the thermal diffusion associated with the mass flux, the shear viscosity corresponding to the pressure tensor and
the Dufour coefficient, the thermal conductivity, and the pressure energy coefficient associated with the heat flux. All
these coefficients are given in terms of the coefficients of restitution as well as on the ratios of concentration, masses and
particle sizes. In addition, as in the previous study for IHS,21 our theory takes into account the effect of temperature
differences (failure of energy equipartition) on the transport coefficients, leading to additional dependencies of them
on the concentration.

The plan of the paper is as follows. In Section II the Boltzmann equation for IMM and the macroscopic conservation
laws are introduced. The model includes average collision frequencies ωrs which can be freely fitted to get good
agreement with IHS. Here, we fix ωrs by the criterion that the cooling rates ζrs of IMM be the same as those
obtained for IHS in the local equilibrium approximation. The homogenous solution of the Boltzmann equation is
analyzed in Section III, where the temperature ratio and the fourth cumulant (kurtosis) of the velocity distribution
functions are exactly obtained. Comparison with the results obtained for IHS22,23 shows an excellent agreement
for the temperature ratio but significant discrepancies with the fourth cumulant of IHS. Section IV deals with the
application of the Chapman-Enskog method to get the transport coefficients of IMM. In Section V, the dependence of
some of these coefficients on the parameters of the system is illustrated and compared with known results derived for
IHS.22,24,25,26 The comparison shows in general a qualitative good agreement, especially for the transport coefficients
defining the mass flux. The paper ends in Section VI with a brief discussion on the results reported in this paper.

II. INELASTIC MAXWELL MODELS FOR A GRANULAR BINARY MIXTURE

Let us consider a binary mixture of inelastic Maxwell gases at low density. The Boltzmann equation for IMM3,4,10,27

can be obtained from the Boltzmann equation for IHS by replacing the rate for collisions between particles of species
r and s by an average velocity-independent collision rate, which is proportional to the square root of the “granular”
temperature T . This means that a random pair of colliding particles undergoes inelastic collisions with a random
impact direction. With this simplification, the velocity distribution functions fr(r,v; t) (r = 1, 2) of each species
satisfy the following set of nonlinear Boltzmann kinetic equations:

(∂t + v · ∇) fr(r,v; t) =
∑

s

Jrs [v|fr(t), fs(t)] , (1)

where the Boltzmann collision operator Jrs [v|fr, fs] is

Jrs [v1|fr, fs] =
ωrs(r, t; αrs)

ns(r, t)Ωd

∫
dv2

∫
dσ̂

×
[
α−1

rs fr(r,v
′
1, t)fs(r,v

′
2, t) − fr(r,v1, t)fs(r,v2, t)

]
. (2)

Here nr is the number density of species r, ωrs 6= ωsr is an effective collision frequency (to be chosen later) for
collisions of type r-s, Ωd = 2πd/2/Γ(d/2) is the total solid angle in d dimensions, and αrs = αsr ≤ 1 refers to the
constant coefficient of restitution for collisions between particles of species r with s. In addition, the primes on the
velocities denote the initial values {v′

1,v
′
2} that lead to {v1,v2} following a binary collision:

v′
1 = v1 − µsr

(
1 + α−1

rs

)
(σ̂ · g12)σ̂, v′

2 = v2 + µrs

(
1 + α−1

rs

)
(σ̂ · g12)σ̂ , (3)

where g12 = v1 − v2 is the relative velocity of the colliding pair, σ̂ is a unit vector directed along the centers of the
two colliding spheres, and µrs = mr/(mr + ms). The collision frequencies ωrs can be seen as free parameters in the
model. Its dependence on the restitution coefficients αrs can be chosen to optimize the agreement with the results
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obtained from the Boltzmann equation for IHS. Of course, the choice is not unique and may depend on the property
of interest.

There is another more refined version of the inelastic Maxwell model1,2,28 where the collision rate has the same
dependence on the scalar product (σ̂ · ĝ12) as in the case of hard spheres. However, both versions of IMM lead to
similar results in problems as delicate as the high energy tails.4 Therefore, for the sake of simplicity, here we will
consider the version given by Eqs. (2) and (3).

The relevant hydrodynamic fields in a binary mixture are the number densities nr, the flow velocity u, and the
granular temperature T . They are defined in terms of the distribution fr as

nr =

∫
dvfr(v), (4)

ρu =
∑

r

ρrur =
∑

r

∫
dvmrvfr(v), (5)

nT = p =
∑

r

nrTr =
∑

r

mr

d

∫
dvV 2fr(v), (6)

where ρr = mrnr is the mass density of species r, n = n1 + n2 is the total number density, ρ = ρ1 + ρ2 is the total
mass density, V = v − u is the peculiar velocity, and p is the hydrostatic pressure. Furthermore, the third equality
of Eq. (6) defines the kinetic temperatures Tr of each species, which measure their mean kinetic energies.

The collision operators conserve the particle number of each species and the total momentum, but the total energy
is not conserved:

∫
dvJrs[v|fr, fs] = 0, (7)

∑

r,s

∫
dvmrvJrs[v|fr , fs] = 0, (8)

∑

r,s

∫
dv

1

2
mrV

2Jrs[v|fr , fs] = −d

2
nTζ , (9)

where ζ is identified as the “cooling rate” due to inelastic collisions among all species. At a kinetic level, it is also
convenient to introduce the “cooling rates” ζr for the partial temperatures Tr. They are defined as

ζr =
∑

s

ζrs = −
∑

s

1

dnrTr

∫
dvmrV

2Jrs[v|fr, fs], (10)

where the second equality defines the quantities ζrs. The total cooling rate ζ can be written in terms of the partial
cooling rates ζr as

ζ = T−1
∑

r

xrTrζr, (11)

where xr = nr/n is the mole fraction of species r.
From Eqs. (4) to (9), the macroscopic balance equations for the binary mixture can be obtained. They are given

by

Dtnr + nr∇ · u +
∇ · jr
mr

= 0 , (12)

Dtu + ρ−1∇ · P = 0 , (13)
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DtT − T

n

∑

r

∇ · jr
mr

+
2

dn
(∇ · q + P : ∇u) = −ζT . (14)

In the above equations, Dt = ∂t + u · ∇ is the material derivative,

jr = mr

∫
dvV fr(v) (15)

is the mass flux for species r relative to the local flow,

P =
∑

r

∫
dv mrVV fr(v) (16)

is the total pressure tensor, and

q =
∑

r

∫
dv

1

2
mrV

2V fr(v) (17)

is the total heat flux. The balance equations (12)–(14) apply regardless of the details of the model for inelastic
collisions considered. However, the influence of the collision model appears through the dependence of the cooling
rate and the hydrodynamic fluxes on the coefficients of restitution.

As happens for elastic collisions,29 the main advantage of using IMM is that a velocity moment of order k of the
Boltzmann collision operator only involves moments of order less than or equal to k.28 This allows one to determine
the Boltzmann collisional moments without the explicit knowledge of the velocity distribution function. The first few
moments of the Boltzmann collision operator Jrs[fr, fs] have been explicitly evaluated in Appendix A. In particular,
according to Eq. (10), the second moment of Jrs[fr, fs] allows one to get a relationship between the collision frequencies
ωrs and the cooling rates ζrs. From Eq. (A2), one easily gets

ζrs =
2ωrs

d
µsr(1 + αrs)

[
1 − µsr

2
(1 + αrs)

θr + θs

θs
+

µsr(1 + αrs) − 1

dρspr
jr · js

]
, (18)

where

θr =
mr

γr

∑

s

m−1
s , (19)

pr = nrTr is the partial pressure of species r and γr ≡ Tr/T .
In order to get explicit results, one still needs to fix the parameters ωrs. The most natural choice to optimize the

agreement with the IHS results is to adjust the cooling rates ζrs for IMM, Eq. (18), to be the same as the ones found
for IHS.22 Although the cooling rates are not exactly known for IHS, a good estimate of them can be obtained by
considering the local equilibrium approximation for the velocity distribution functions fr, i.e.,

fr(V) → nr

(
mr

2πTr

)d/2

exp

(
−mrV

2

2Tr

)
. (20)

In this approximation, one has22

ζIHS
rs → 2Ωd√

πd
nsµsrσ

d−1
rs v0

(
θr + θs

θrθs

)1/2

(1 + αrs)

[
1 − µsr

2
(1 + αrs)

θr + θs

θs

]
, (21)

where v0(t) =
√

2T (m1 + m2)/m1m2 is a thermal velocity defined in terms of the temperature T (t) of the mixture.
Thus, according to Eq. (18), the collision frequencies ωrs are given by

ωrs = 4xs

(
σrs

σ12

)d−1 (
θr + θs

θrθs

)1/2

ν0, (22)

where ν0 is an effective collision frequency given by

ν0 =
Ωd

4
√

π
nσd−1

12 v0. (23)

Upon deriving (22) use has been made of the fact that the mass flux jr vanishes in the local equilibrium approximation
(20). In the remainder of this paper, we will take the choice (22) for ωrs.
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III. HOMOGENEOUS COOLING STATE

As a previous step to determine the Navier-Stokes transport coefficients from the Chapman-Enskog method,17

one needs to analyze the homogeneous solution of the Boltzmann equation (1). In this case (spatially isotropic
homogeneous states), the Boltzmann equation (1) becomes

∂tfr(v; t) =
∑

s

Jrs[v|fr, fs]. (24)

From Eq. (24), one has

∂tT = −ζT, ∂tTr = −ζrTr. (25)

The time evolution of the temperature ratio γ ≡ T1(t)/T2(t) follows from the second equality of Eq. (25):

∂t ln γ = ζ2 − ζ1. (26)

In addition, since the mass flux vanishes in the homogeneous state, Eq. (18) gives the relation

ζr =
∑

s

ζrs =
∑

s

2ωrs

d
µsr(1 + αrs)

[
1 − µsr

2
(1 + αrs)

θr + θs

θs

]
, (27)

where ωrs is given by Eq. (22).
The so-called homogeneous cooling state (HCS) qualifies as a normal solution for which all the time dependence of

fr(v; t) is through the global temperature T (t). Consequently, it follows from dimensional analysis that fr(v; t) has
the scaling form

fr(v, t) = nrv
−d
0 (t)Φr(v/v0(t)), (28)

where v0 is the thermal velocity previously introduced. The fact that the time dependence of fr(v; t) only occurs
through the temperature T (t) (which is the relevant one at a hydrodynamic level) implies that the three temperatures
T1(t), T2(t) and T (t) are proportional to each other and their ratios are all constant. One possibility is that all three
temperatures are equal, as in the case of elastic collisions. However, as we will see later, the partial temperatures are
different. Since the temperature ratio must be independent of time, Eq. (26) leads to the equality of the cooling rates:

ζ1(t) = ζ2(t) = ζ(t). (29)

When the expression (27) is substituted into (29), one gets a closed nonlinear equation for γ whose numerical solution
gives the dependence of the temperature ratio on the parameters of the problem. Except for mechanically equivalent
particles, our results show that although both species have a common cooling rate, their partial temperatures are
clearly different. This implies a breakdown of the energy equipartition. The violation of energy equipartition in
multicomponent granular systems22,27,30,31,32,33 has also been confirmed in computer simulations23,34,35,36 and even
observed in real experiments in two37 and three38 dimensions. It must be remarked that the fact that T1(t) 6= T2(t)
does not mean that there are additional hydrodynamic degrees of freedom since the partial temperatures Tr can be
expressed in terms of the granular temperature T as

T1(t) =
γ

1 + x1(γ − 1)
T (t), T2(t) =

1

1 + x1(γ − 1)
T (t). (30)

The problem is therefore to solve the Boltzmann equation for a distribution of the form (28) subject to the self-
consistency constraint (29). In terms of the reduced velocity v∗ = v/v0, the Boltzmann equation (24) for the reduced
distribution Φr defined in Eq. (28) becomes

1

2
ζ∗

∂

∂v∗
· (v∗Φr) =

∑

s

J∗
rs[v

∗|Φr, Φs], (31)

with ζ∗ = ζ/ν0. In addition,

J∗
rs[Φr, Φs] =

ω∗
rs

Ωd

∫
dv∗

2

∫
dσ̂

[
α−1

rs Φr(v
′∗
1 )Φs(v

′∗
2 ) − Φr(v

∗
1)Φs(v

∗
2)

]
, (32)
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FIG. 1: Plot of the temperature ratio γ = T1/T2 versus the coefficient of restitution α for d = 3, x1 = 2

3
, σ1/σ2 = 1 and three

different values of the mass ratio m1/m2: (a) m1/m2 = 10 (circles), (b) m1/m2 = 2 (squares), and (c) m1/m2 = 0.1 (triangles).
The solid lines are the results derived here for IMM, the dashed lines correspond to the results obtained for IHS from the first
Sonine approximation,22 and the symbols refer to Monte Carlo simulations for IHS.23

where ω∗
r = ωr/ν0. Upon writing Eq. (31), we have accounted for the time dependence of fr, which implies that

∂tfr = −ζT∂T fr =
1

2
ζ

∂

∂v
· (vfr) . (33)

Although the exact form of the distribution Φr is not known, an indirect information on the behavior of Φr is given
through its velocity moments. In particular, the deviation of Φr with respect to its Maxwellian form Φr,M can be
characterized through the fourth cumulant

cr = 2

[
4

d(d + 2)
θ2

r〈v∗4〉r − 1

]
, (34)

where

〈v∗4〉r =

∫
dv∗v∗4Φr(v

∗), (35)

and

Φr,M (v∗) = π−d/2θd/2
r e−θrv∗2

. (36)

To get the fourth velocity moment, we multiply both sides of the Boltzmann equation (31) by v∗4 and integrate over
the velocity. The result is

−2ζ∗〈v∗4〉r =
∑

s

∫
dv∗v∗4J∗

rs[v
∗|Φr, Φs]. (37)

The collisional moment appearing on the right-hand side of (37) is evaluated in Appendix A with the result
∫

dv∗v∗4J∗
rs[Φr, Φs] =

µsr(1 + αrs)

d(d + 2)
ω∗

rs

{
3µ3

sr(1 + αrs)
3〈v∗4〉s

+
[
2d + 3µ2

sr(1 + αrs)
2 − 6µsr(1 + αrs) + 4

]
[µsr(1 + αrs) − 2] 〈v∗4〉r

+
d(d + 2)

4
µsrθ

−1
r θ−1

s (1 + αrs) [2d + 4 − 12µsr(1 + αrs)

+6µ2
sr(1 + αrs)

2
]}

. (38)

Substitution of Eq. (38) into Eq. (37) leads to a coupled set of linear equations for 〈v∗4〉1 and 〈v∗4〉2 (or equivalently,
for c1 and c2). The solution of this set gives c1 and c2 in terms of the parameter space of the problem. In the
one-dimensional case (d = 1), our results reduce to the ones previously obtained by Marconi and Puglisi32 from the
so-called Maxwell scalar model (i.e., by taking ωrs ∝ ns). Moreover, for mechanically equivalent particles (σ1 = σ2,
m1 = m2, α11 = α22 = α12 = α), the results obtained by Santos16 for the single gas case are recovered, namely, γ = 1
and

c1 = c2 =
12(1 − α)2

4d − 7 + 3α(2 − α)
. (39)
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FIG. 2: Plot of the coefficients cr versus the coefficient of restitution α for d = 3, x1 = 1

2
, σ1/σ2 = 1 and m1/m2 = 2. The solid

lines are the results derived here for IMM, the dashed lines correspond to the results obtained for IHS from the first Sonine
approximation,22 and the symbols refer to Monte Carlo simulations for IHS.23The circles correspond to c1 while the squares
correspond to c2.

A full presentation of the results is difficult due to the many parameters involved in the problem: α11, α12, α22,
m1/m2, x1, and σ1/σ2. For the sake of concreteness, henceforth we will consider the case α11 = α22 = α12 ≡ α. In
Fig. 1 we show the dependence of γ on α in the three-dimensional case for x1 = 2

3 , σ1/σ2 = 1 and three different

values of the mass ratio m1/m2. We include the analytical results obtained for IMM and IHS22 as well as the results
(symbols) obtained23 by numerically solving the Boltzmann equation by means of the direct simulation Monte Carlo
(DSMC) method.39 It is apparent that the analytical results for IMM and IHS are practically indistinguishable over
the range of values of α considered and that the agreement of both approaches with simulation is excellent. We also
observe that the extent of the equipartition violation is greater when the mass disparity is large. In addition, the
temperature of the excess species is larger (smaller) than that of the defect species when the excess species is heavier
(lighter) than the defect species. The dependence of the coefficients c1 and c2 on the coefficient of restitution α is
plotted in Fig. 1 in the three-dimensional case for x1 = 1

2 , σ1/σ2 = 1 and m1/m2 = 2. It can be observed that the
HCS of IMM deviates from the Gaussian distribution (which corresponds to c1 = c2 = 0) much more than the HCS
of IHS. This is consistent with the fact that the former models have a stronger overpopulated high energy tail4,10,32

than the latter.40 For both interaction models, the deviation of Φr from its Gaussian form is more significant for the
heavy species. We also see that the value of the kurtosis cr predicted by the IMM exhibits quantitative discrepancies
with the one found for IHS, especially for strong dissipation.

IV. CHAPMAN-ENSKOG SOLUTION OF THE BOLTZMANN EQUATION FOR IMM

In this Section, the Chapman-Enskog method17 generalized to inelastic collisions will be applied to the set of
Boltzmann equations (1) for IMM to get explicit expressions for the Navier-Stokes transport coefficients as functions
of the coefficients of restitution and the parameters of the mixture (masses, composition, and sizes).

The balance equations (12)–(14) become a closed set of hydrodynamic equations for the fields nr, u, and T once
the fluxes (15)–(17) and the cooling rate ζ are obtained in terms of the hydrodynamic fields and their gradients.
As noted in Sec. I, while the pressure tensor has the same form as for a one-component system, there is greater
freedom in representing the heat and mass fluxes. Here, as done in the IHS case,21 we take the gradients of the mole
fraction x1 = n1/n, the pressure p, the temperature T , and the flow velocity u as the relevant ones. Thus, in this
representation, the phenomenological constitutive relations for the fluxes in the low-density regime have the forms20

j1 = −m1m2n

ρ
D∇x1 −

ρ

p
Dp∇p − ρ

T
D′∇T, j2 = −j1, (40)

q = −T 2D′′∇x1 − L∇p − λ∇T, (41)

Pij = pδij − η

(
∇jui + ∇iuj −

2

d
δij∇ · u

)
. (42)

The transport coefficients in these equations are the diffusion coefficient D, the thermal diffusion coefficient D′, the
pressure diffusion coefficient Dp, the Dufour coefficient D′′, the thermal conductivity λ, the pressure energy coefficient
L, and the shear viscosity η.
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The Chapman-Enskog method assumes the existence of a normal solution in which all space and time dependence
of the distribution function occurs through a functional dependence on the hydrodynamic fields

fr(r,v, t) = fr[v|x1(t), p(t), T (t),u(t)]. (43)

This functional dependence can be made local in space and time by means of an expansion in gradients of the fields.
Thus, we write fr as a series expansion in a formal parameter ǫ measuring the nonuniformity of the system,

fr = f (0)
r + ǫ f (1)

r + ǫ2 f (2)
r + · · · , (44)

where each factor of ǫ means an implicit gradient of a hydrodynamic field. The local reference state f
(0)
r is chosen to

give the same first moments as the exact distribution fr, or equivalently, the remainder of the expansion must obey
the orthogonality conditions

∫
dv

[
fr(v) − f (0)

r (v)
]

= 0, (45)

∑

r

∫
dvmrv

[
fr(v) − f (0)

r (v)
]

= 0, (46)

∑

r

∫
dv

mr

2
v2

[
fr(v) − f (0)

r (v)
]

= 0. (47)

Use of the expansion (44) in the definitions of the fluxes (15)–(17) and the cooling rate (10) gives the corresponding

expansion for these quantities. The time derivatives of the fields are also expanded as ∂t = ∂
(0)
t + ǫ∂

(1)
t + · · · . The

coefficients of the time derivative expansion are identified from the balance equations (12)–(14) after expanding the
fluxes and the cooling rate ζ. In particular, the macroscopic balance equations to zeroth order become

∂
(0)
t xr = 0, ∂

(0)
t u = 0, T−1∂

(0)
t T = p−1∂

(0)
t p = −ζ(0). (48)

Here, we have taken into account that in the Boltzmann equation (1) the effective collision frequency ωrs ∝ nsT
1/2 ∝

xspT−1/2 is assumed to be a functional of fr and fs only through the mole fraction xs, the pressure p, and the

temperature T . As a consequence, ω
(0)
rs = ωrs, and ω

(1)
rs = ω

(2)
rs = · · · = 0.

In the zeroth order, f
(0)
r obeys the kinetic equation

1

2
ζ(0) ∂

∂V
·
(
Vf (0)

r

)
=

∑

s

Jrs[f
(0)
r , f (0)

s ], (49)

where use has been made of the relation (33) with ζ(0) = ζ
(0)
r given by Eq. (27). The distribution f

(0)
r is given by the

scaling form (28) except that nr → nr(r, t) and T → T (r, t) are local quantities and v → V = v − u(r, t). Since f
(0)
r

is isotropic, it follows that

j
(0)
1 = 0, q(0) = 0, P

(0)
ij = pδij , (50)

where p = nT is the hydrostatic pressure.

In the first order, the distribution function f
(1)
r verifies the kinetic equation

(
∂

(0)
t + Lr

)
f (1)

r + Mrf
(1)
s = −

(
D

(1)
t + V · ∇

)
f (0)

r , (51)

where it is understood that r 6= s. Here, D
(1)
t = ∂

(1)
t +u ·∇ and we have introduced the linearized collision operators

Lrf
(1)
r = −

(
Jrr[f

(0)
r , f (1)

r ] + Jrr[f
(1)
r , f (0)

r ] + Jrs[f
(1)
r , f (0)

s ]
)

, (52)

Mrf
(1)
s = −Jrs[f

(0)
r , f (1)

s ]. (53)
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The action of the material time derivatives D
(1)
t on the hydrodynamic fields is

D
(1)
t x1 = 0,

d

d + 2
D

(1)
t ln p =

d

2
D

(1)
t lnT = −∇ · u, D

(1)
t u = −ρ−1∇p. (54)

In these equations use has been made of the results (50) and the identity ζ(1) = 0. The last equality easily follows

from Eq. (18). The right-hand side of Eq. (51) can be evaluated by using Eqs. (54) and so the equation for f
(1)
r can

be written as
(
∂

(0)
t + Lr

)
f (1)

r + Mrf
(1)
s = Ar · ∇x1 + Br · ∇p + Cr · ∇T + Dr,ij∇iuj, (55)

where

Ar(V) = −
(

∂

∂x1
f (0)

r

)

p,T

V, (56)

Br(V) = −1

p

[
f (0)

r V +
p

ρ

(
∂

∂V
f (0)

r

)]
, (57)

Cr(V) =
1

T

[
f (0)

r +
1

2

∂

∂V
·
(
Vf (0)

r

)]
V, (58)

Dr,ij(V) =
∂

∂Vj

(
Vif

(0)
r

)
− 1

d
δij

∂

∂V
·
(
Vf (0)

r

)
. (59)

It is worth noting that Eqs. (55)–(59) have the same structure as that of the Boltzmann equation for IHS.21 The only
difference between both models lies in the explicit form of the linearized operators Lr and Mr.

Now we are in conditions to get the expressions for the mass flux, the pressure tensor, and the heat flux in the first
order of gradients. These expressions allows one to identify the relevant transport coefficients of the mixture through
Eqs. (40)–(42).

V. NAVIER-STOKES TRANSPORT COEFFICIENTS

This Section is devoted to the determination of the Navier-Stokes transport coefficients associated with the irre-
versible fluxes. We only display here the final expressions for the transport coefficients with technical details given in
Appendix B.

To first order in the hydrodynamic gradients, the mass flux has the form given by Eq. (40). The transport coefficients
D, Dp, and D′ are given by

D =
ρ

m1m2n

(
ν − 1

2
ζ(0)

)−1
[
p

(
∂

∂x1
x1γ1

)

p,T

+ ρ

(
∂ζ(0)

∂x1

)

p,T

(Dp + D′)

]
, (60)

Dp =
n1T1

ρ

(
1 − m1nT

ρT1

) (
ν − 3

2
ζ(0) +

ζ(0)2

2ν

)−1

, (61)

D′ = −ζ(0)

2ν
Dp, (62)

where

ν =
ρω12

dρ2
µ21(1 + α12) =

4

d

ρ

n(m1 + m2)

(
θ1 + θ2

θ1θ2

)1/2

ν0(1 + α12). (63)
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Since j1 = −j2 and ∇x1 = −∇x2, D should be symmetric while Dp and D′ should be antisymmetric with respect to

the exchange 1 ↔ 2 . This can be easily verified by noting that n1T1 + n2T2 = nT . For elastic collisions, ζ(0) = 0,
T1 = T2 = T , and so Eqs. (60)–(62) become

D =
d

8

m1 + m2

m1m2

p

ν0
, (64)

Dp =
d

8
(m2

2 − m2
1)

n1n2p

ρ3ν0
, D′ = 0, (65)

where use has been made again of Eq. (22). In the case of mechanically equivalent particles, γ = 1, Dp = D′ = 0, so
that Eq. (60) gives the expression of the self-diffusion coefficient

D =
p

m

(
ν − 1

2
ζ(0)

)−1

. (66)

The pressure tensor has the form (42) with the shear viscosity coefficient η given by

η = η1 + η2. (67)

The expression of the partial contributions ηr is

η1 = 2
p1(2τ22 − ζ(0)) − 2p2τ12

ζ(0)2 − 2ζ(0)(τ11 + τ22) + 4(τ11τ22 − τ12τ21)
, (68)

where the quantities τ11 and τ12 are defined by Eqs. (B12) and (B13), respectively. A similar expression can be obtained
for η2 by just making the changes 1 ↔ 2. For mechanically equivalent particles, Eq. (68) yields η1/x1 = η2/x2 = η,
where

η =
p

νη − 1
2 ζ(0)

, νη =
(1 + α)(d + 1 − α)

d(d + 2)
ω, (69)

and ω = ωrs/xs. The expression (69) coincides with the one previously derived in the single gas case.16

The case of the heat flux is more involved. Its form is given by Eq. (41) where the coefficients D′′, L and λ are

D′′ = D′′
1 + D′′

2 , L = L1 + L2, λ = λ1 + λ2. (70)

By using matrix notation, the coupled set of six equations for the unknowns

{D′′
1 , D′′

2 , L1, L2, λ1, λ2} (71)

can be written as

Λσσ′Xσ′ = Yσ. (72)

Here, Xσ′ is the column matrix defined by the set (71) and Λσσ′ is the square matrix

Λ =





T 2(3
2ζ(0) − β11) −T 2β12 p

(
∂ζ(0)

∂x1

)

p,T
0 T

(
∂ζ(0)

∂x1

)

p,T
0

−T 2β21 T 2(3
2ζ(0) − β22) 0 p

(
∂ζ(0)

∂x1

)

p,T
0 T

(
∂ζ(0)

∂x1

)

p,T

0 0 5
2ζ(0) − β11 −β12 Tζ(0)/p 0

0 0 −β21
5
2ζ(0) − β22 0 Tζ(0)/p

0 0 −pζ(0)/2T 0 ζ(0) − β11 −β12

0 0 0 −pζ(0)/2T −β21 ζ(0) − β22





. (73)

The column matrix Y is

Y =





Y1

Y2

Y3

Y4

Y5

Y6




, (74)
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where

Y1 =
m1m2n

ρ
A12D − d + 2

2

nT 2

m1

∂

∂x1

[(
1 +

c1

2

)
x1γ

2
1

]
, (75)

Y2 = −m1m2n

ρ
A21D − d + 2

2

nT 2

m2

∂

∂x1

[(
1 +

c2

2

)
x2γ

2
2

]
, (76)

Y3 =
ρ

p
A12Dp − d + 2

2

n1T
2
1

m1p

(
1 − m1p

ρT1
+

c1

2

)
, (77)

Y4 = −ρ

p
A21Dp − d + 2

2

n2T
2
2

m2p

(
1 − m2p

ρT2
+

c2

2

)
, (78)

Y5 =
ρ

T
A12D

′ − d + 2

2

n1T
2
1

m1T

(
1 +

c1

2

)
, (79)

Y6 = − ρ

T
A21D

′ − d + 2

2

n2T
2
2

m2T

(
1 +

c2

2

)
. (80)

The expressions of the quantities βrs and Ars are given in Appendix B.
The solution to Eq. (72) is

Xσ =
(
Λ−1

)
σσ′

Yσ′ . (81)

This relation provides an explicit expression for the coefficients D′′
r , Lr and λr in terms of the coefficients of restitution

and the parameters of the mixture. From these expressions one easily gets the transport coefficients D′′, L, and λ
from Eq. (70). As expected, Eqs. (72)–(80) show that D′′ is antisymmetric with respect to the change 1 ↔ 2, while
L and λ are symmetric. This implies that in the case of mechanically equivalent particles, the Dufour coefficient D′′

vanishes. Furthermore, in this limit, Eq. (81) leads to the following expression for the heat flux

q = −κ∇T − µ∇n, (82)

where

κ = λ + nL =
d + 2

2

p

m

1 + c

νκ − 2ζ(0)
, (83)

µ = TL =
T

n

κ(ζ(0) + 1
2cνκ)

(1 + c)(νκ − 3
2ζ(0))

, (84)

with

νκ =
4(d − 1) + (8 + d)(1 − α)

4d + 4(1 − α)
νη. (85)

Note that upon writing Eq. (82) use has been made of the relation ∇p = n∇T +T∇n. Again, Eqs. (82)–(85) coincide
with results derived for a single gas.16 Using Eqs. (83)–(85), it can be seen that the coefficients κ and µ diverge for
d = 2 and d = 3 when α = α0 = (4−d)/3d and so, both coefficients become negative for 0 ≤ α < α0. This unphysical
behavior could be due to the failure of the hydrodynamic description for values of the coefficient of restitution smaller
than α0 or perhaps to the existence of a certain type of hydrodynamic instability. However, given that the value of α0

is quite small (α0 = 1
3 at d = 2 and α0 = 1

9 at d = 3) this singular behavior could be interpreted as a hydrodynamic
breakdown indeed. Elucidation of this point requires further analysis. It must be remarked that the above drawback
is absent for IHS since all the transport coefficients are regular functions of α for all d.
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self-diffusion
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( α
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FIG. 3: Plot of the reduced self-diffusion coefficient D(α)/D(1) as a function of the coefficient of restitution α in the three-
dimensional case for IMM (solid line) and for IHS in the first Sonine approximation (dashed line)41 and in the second Sonine
approximation (dotted line).26 The symbols refer to Monte Carlo simulations for IHS.26,41

0.5 0.6 0.7 0.8 0.9 1.0

2
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8
m1/m2=8  σ1/σ2=2  x1=0

α

D
( α

) 
/D

(1
)

FIG. 4: Plot of the reduced diffusion coefficient D(α)/D(1) as a function of the coefficient of restitution α in the three-
dimensional case for σ1/σ2 = 2, x1 = 0 (tracer limit) and m1/m2 = 8. The solid line corresponds to the exact results obtained
here for IMM while the dashed line is the result derived for IHS in the second Sonine approximation.26 The symbols refer to
Monte Carlo simulations for IHS.26

VI. COMPARISON WITH THE TRANSPORT COEFFICIENTS FOR IHS

The expressions for the transport coefficients of IHS described by the Boltzmann equation have been obtained
by Garzó and Dufty21 in the leading Sonine approximation for a three-dimensional system. These expressions have
been then evaluated for a variety of mass and diameter ratios in the cases of the diffusion coefficient26 and the shear
viscosity coefficient,25 showing quite a good agreement with Monte Carlo simulations. In this section, we compare
the results derived here for IMM for the transport coefficients entering in the mass and momentum fluxes, namely,

0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.5

2.0

2.5

3.0

3.5
σ1=σ2  x1=0.2

m1/m2=0.5

m1/m2=4

D
( α

) 
/D

(1
)

α

FIG. 5: Plot of the reduced diffusion coefficient D(α)/D(1) as a function of the coefficient of restitution α in the three-
dimensional case for σ1 = σ2, x1 = 0.2, and two different values of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The solid
lines correspond to the exact results obtained here for IMM while the dashed lines are the results derived for IHS in the first
Sonine approximation.21
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FIG. 6: Plot of the reduced pressure diffusion coefficient Dp(α)/Dp(1) as a function of the coefficient of restitution α in the
three-dimensional case for σ1 = σ2, x1 = 0.2, and two different values of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The
solid lines correspond to the exact results obtained here for IMM while the dashed lines are the results derived for IHS in the
first Sonine approximation.21

0.5 0.6 0.7 0.8 0.9 1.0
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- D
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FIG. 7: Plot of the reduced coefficient −D∗(α) = −D′(α)/Dp(1) as a function of the coefficient of restitution α in the three-
dimensional case for σ1 = σ2, x1 = 0.2, and two different values of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The solid
lines correspond to the exact results obtained here for IMM while the dashed lines are the results derived for IHS in the first
Sonine approximation.21

D, Dp, D
′, and η with those obtained for IHS in the case d = 3. As in the cases studied in Section III, we consider for

the sake of simplicity a common coefficient of restitution, i.e., α11 = α12 = α22 ≡ α.
Let us consider first, the diffusion coefficient D in the limit cases of self-diffusion (mechanically equivalent particles)

and tracer concentration (x1 → 0). Figure 3 shows the reduced self-diffusion coefficient D(α)/D(1) as a function
of the coefficient of restitution α. Here, D(1) refers to the self-diffusion coefficient (66) for elastic collisions. We
include the results obtained for IHS by using the first Sonine approximation (dashed line),24,41 the second Sonine
approximation (dotted line) and by Monte Carlo simulations (symbols).26 We observe that the agreement between
the predictions of the first Sonine approximation for IHS and for IMM is excellent in the whole range of values of
α analyzed. Moreover, both theories compare quite well with computer simulations even beyond the quasielastic
limit (say for instance, α ≥ 0.8). However, as dissipation increases, the agreement between theory and simulation
is improved when one considers the second Sonine approximation. For mechanically different particles, in Fig. 4 we
plot D(α)/D(1) versus α in the tracer limit (x1 → 0) for m1/m2 = 8 and σ1/σ2 = 2 as given by the exact results
for IMM, the second Sonine approximation for IHS26 and by Monte Carlo simulations. We see that both theories are
practically indistinguishable and present an excellent agreement with simulation data.

Beyond the above two special cases, Figs. 5–6 show the dependence of the reduced coefficients D(α)/D(1),
Dp(α)/Dp(1), and −D∗(α) on the coefficient of restitution for σ1 = σ2, x1 = 0.2, and two values of the mass ratio

(m1/m2 = 0.5 and 4). Here, Dp(1) is given by the first equality of Eq. (65) and D∗(α) = −(ζ(0)/2ν)Dp(α)/Dp(1) =
−D′(α)/Dp(1). The solid lines correspond to the IMM results while the dashed lines refer to the results obtained for
IHS in the first Sonine approximation.21 We observe that, in general, the qualitative behavior of IHS is well captured
by the IMM. At a quantitative level, for not strong dissipation (say for instance, α ≥ 0.8) the agreement between
the results derived for IMM and IHS is again quite good, especially in the case of m1/m2 = 0.5. Nevertheless, the
discrepancies between both interaction models increase as the coefficient of restitution decreases. For instance, at
α = 0.5, the discrepancies for D(α)/D(1), Dp(α)/Dp(1), and −D∗(α) are about 4%, 5%, and 8%, respectively, for
m1/m2 = 4, while they are about 1%, 3%, and 3%, respectively, for m1/m2 = 0.5.
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FIG. 8: Plot of the reduced shear viscosity coefficient η(α)/η(1) as a function of the coefficient of restitution α in the three-
dimensional case for σ1 = σ2, x1 = 0.2, and two different values of the mass ratio: m1/m2 = 0.5 and m1/m2 = 4. The solid
lines correspond to the exact results obtained here for IMM while the dashed lines are the results derived for IHS in the first
Sonine approximation.25

The dependence of the reduced shear viscosity coefficient η(α)/η(1) on dissipation is plotted in Fig. 8 for σ1 = σ2,
x1 = 0.2, and for two values of the mass ratio (m1/m2 = 0.5 and 4). Here, η(1) is the corresponding value of the
shear viscosity coefficient for elastic collisions. Although again the IMM predictions compare qualitatively well with
the ones derived for IHS, we observe that in general the discrepancies for both interaction models at the level of the
shear viscosity are larger than those found for the transport coefficients of the mass flux. The discrepancies observed
in Fig. 8 are similar to those found in the single gas case.16

VII. DISCUSSION

The primary objective of this work has been to derive the hydrodynamic equations of a granular binary mixture from
the Boltzmann kinetic theory for inelastic Maxwell models (IMM). In the Boltzmann equation for inelastic Maxwell
models (IMM), the collision rate of inelastic hard spheres (IHS) is replaced by an effective collision rate independent
of the relative velocity of the two colliding particles. As in the elastic case,29 this property allows us to get exactly
the velocity moments of the Boltzmann collision integrals without the explicit knowledge of the velocity distribution
function. Here, the Chapman-Enskog method has been applied to get a normal solution of the Boltzmann equation
for states near the local homogenous cooling state. The derivation of the Navier-Stokes hydrodynamic equations
consists of two steps. As a first step, the reference homogenous cooling state for a mixture of inelastic Maxwell gases
is analyzed to provide the proper basis for description of transport due to spatial inhomogeneities. As in the case
of inelastic hard spheres (IHS),22 our solution for the homogeneous state shows that the kinetic temperatures for
each species are clearly different so that the total energy is not equally distributed between both species (breakdown
of energy equipartition). In addition, we also compute the fourth cumulant of the velocity distribution functions,
which is a measure of the deviation of the distributions from the Maxwellian form. Once the reference state is well
characterized, as a second step we obtain exact expressions for the mass flux, the pressure tensor, and the heat flux
in the first order of the hydrodynamic gradients (Navier-Stokes order). From these expressions we identify the seven
relevant transport coefficients of the problem, namely the mutual diffusion D, Eq. (60), the pressure diffusion Dp,
Eq. (61), the thermal diffusion D′, Eq. (62), the shear viscosity η, Eqs. (67) and (68), the Dufour coefficient D′′,
the pressure energy coefficient L, and the thermal conductivity λ as given by Eqs. (70)–(81), respectively. These
expressions are exact (within the context of IMM) and constitute the main goal of this paper. This contrasts with the
previous results derived for IHS,21 where the transport coefficients have been approximately obtained by considering
the leading terms in a Sonine polynomial expansion of the distribution function.

The purpose of our work is twofold. First, the evaluation of the transport coefficients for mixtures of IMM is worth-
while studying by itself as a simple model to gain some insight into the influence of collisional cooling on the transport
properties of the system. Second, the comparison between the exact results for IMM with the results obtained for
IHS by using approximate analytical methods allows us to assess the degree of reliability of IMM to reproduce the
relevant behavior of IHS in the context of granular mixtures. Recent results13 derived for multicomponent systems in
the simple shear flow problem show a good agreement between both interaction models over a wide range values of
the parameter space.

To make contact with the results obtained for IHS21 one needs to fix the collision frequencies ωrs. These quantities
can be seen as free parameters of the model to be adjusted to optimize the agreement with IHS. As in the study made
in Ref. 13, here we have chosen ωrs to reproduce the cooling rates ζrs of IHS in the local equilibrium approximation,
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FIG. 9: Plot of the reduced coefficients κ(α)/κ(1) and µ∗ = nµ/Tκ(1) as a function of the coefficient of restitution α in the
three-dimensional case for a single gas. The solid lines correspond to the exact results obtained for IMM16 while the dashed
lines are the results derived for IHS in the first Sonine approximation.18

Eq. (21). An exploration of the dependence of the seven transport coefficients on the full parameter space (mass
ratio, diameters, concentrations, coefficients of restitution) is straightforward but perhaps beyond the scope of this
presentation. Here, we have focused on the dependence of the coefficients D, Dp, D′, and η on the common restitution
coefficient α for different values of composition, sizes, and masses. The comparison with known results for IHS22,25,26

has been illustrated in Figs. 3–8. In addition, Monte Carlo simulations have been also included in some plots.
The comparison shows that, in general, the IMM predictions are reasonably good for not too large dissipation (say,
α ≥ 0.8), especially for the transport coefficients associated with the mass flux (first-degree velocity moment). The
discrepancies between both interaction models increase in the case of the shear viscosity coefficient, which is related to
a second-degree moment (pressure tensor). However, the IMM results still capture qualitatively well the dependence
of η on α for IHS since the discrepancies between both models are about 4% at α = 0.8 and about 9% at α = 0.5. As
in the monocomponent case,16 more significant disagreement between IMM and IHS are expected when one compares
higher degree moments, such as the heat flux. To show these discrepancies, in Fig. 9 we plot the reduced coefficients
κ(α)/κ(1) and µ∗ = nµ/Tκ(1) for d = 3 in the single gas case. Here, κ(α) is given by Eq. (83) while the coefficient
µ(α) is given by Eq. (84). As was emphasized in Ref. 16, the trends observed for IHS are strongly exaggerated by the
IMM, where κ and µ diverge at α = 1

9 .
A simple application of the results obtained in this paper would be the determination of the dispersion relations

for the hydrodynamic equations linearized about a homogeneous state. This analysis would allow us to identify the
conditions for stability as functions of the wave vector, the dissipation, and the parameters of the mixture. Another
possible direction of study would be to check the validity of Onsager’s reciprocal relations20 between the different
transport coefficients associated with the mass and heat fluxes. Since the system is not time reversal invariant,
violation of Onsager’s relations is expected for inelastic collisions. The goal would be to assess the influence of
dissipation on such violation. We plan to work on these issues in the next future.

APPENDIX A: COLLISIONAL MOMENTS IN THE INELASTIC MAXWELL MODEL

In this Appendix we will determine the collisional integrals of mrV, mrVV, and mrV
2V appearing in the evaluation

of the transport coefficients. The two first integrals were already obtained by one of the authors in a previous paper13

on the analysis of rheological properties. Now, for the sake of completeness, we display their explicit expressions:

∫
dvmrVJrs[fr, fs] = −wrs

ρsd
µsr(1 + αrs) (ρsjr − ρrjs) , (A1)

∫
dvmrVVJrs[fr, fs] = −wrs

ρsd
µsr(1 + αrs) {2ρsPr − (jrjs + jsjr)

− 2

d + 2
µsr(1 + αrs) [ρsPr + ρrPs − (jrjs + jsjr)

+

[
d

2
(ρrps + ρspr) − jr · js

]
11

]}
, (A2)
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where 11 is the d × d unit tensor. It only remains here to get the collisional integral Qrs corresponding to the heat
flux:

Qrs ≡
∫

dv
1

2
mrV

2VJrs[v|fr , fs]. (A3)

To simplify its calculation, a useful identity for an arbitrary function h(v) is given by

∫
dv1h(v1)Jrs[v1|fr, fs] =

wrs

nsΩd

∫
dv1

∫
dv2fr(v1)fs(v2)

∫
dσ̂ [h(v′′

1 ) − h(v1)] , (A4)

with

v′′
1 = v1 − µsr(1 + αrs)(σ̂ · g12)σ̂, (A5)

and g12 = v1 − v2. Now, we particularize to h(V) = 1
2mrVV 2. In this case, using (A4) one has

Qrs =
wrs

nsΩd

mr

2

∫
dv1

∫
dv2fr(v1)fs(v2)

∫
dσ̂

(
V

′′2
1 V′′

1 − V 2
1 V1

)
. (A6)

From the scattering rule (A5) it follows that

V
′′2
1 V′′

1 − V 2
1 V1 = −µsr(1 + αrs)(σ̂ · g12)

{[
V 2

1 − 2µsr(1 + αrs)(σ̂ · g12)(σ̂ ·V1)

+µ2
sr(1 + αrs)

2(σ̂ · g12)
2
]
σ̂

+ [2(σ̂ · V1) − µsr(1 + αrs)(σ̂ · g12)]V1} . (A7)

To perform the angular integration, one needs the results

∫
dσ̂ (σ̂ · g12)

k
σ̂ = Bk+1g

k−1
12 g12, (A8)

∫
dσ̂ (σ̂ · g12)

k
σ̂σ̂ =

Bk

k + d
gk−2
12

(
kg12g12 + g2

1211
)
, (A9)

where4

Bk =

∫
dσ̂ (σ̂ · ĝ12)

k = Ωdπ
−1/2 Γ

(
d
2

)
Γ

(
k+1
2

)

Γ
(

k+d
2

) . (A10)

Taking into account Eqs. (A7) and (A8)–(A10), the integration over σ̂ in Eq. (A6) leads to

Qrs = − wrs

nsd(d + 2)

mr

2
µsr(1 + αrs)

∫
dv1

∫
dv2fr(v1)fs(v2)

×
[
(d + 2)V 2

1 g12 − 4µsr(1 + αrs) (g12 ·V1)g12 − (d + 4)µsr(1 + αrs)g
2
12V1

+3µ2
sr(1 + αrs)

2g2
12g12 + 2(d + 2) (g12 ·V1)V1

]
. (A11)

The corresponding integrations over velocity give the relations

∫
dv1

∫
dv2

mr

2
V 2

1 g12fr(v1)fs(v2) = nsqr −
d

2ms
prjs, (A12)

∫
dv1

∫
dv2

mr

2
(g12 · V1)g12fr(v1)fs(v2) = nsqr −

1

2ms
(dprjs + Pr · js − Ps · jr) , (A13)

∫
dv1

∫
dv2

mr

2
g2
12V1fr(v1)fs(v2) = nsqr +

1

2ms
(dpsjr − 2Pr · js) , (A14)
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∫
dv1

∫
dv2

mr

2
(g12 ·V1)V1fr(v1)fs(v2) = nsqr −

1

2ms
Pr · js, (A15)

∫
dv1

∫
dv2

mr

2
g2
12g12 fr(v1)fs(v2) = nsqr −

mr

ms
nrqr

− 1

2ms
(dprjs − dpsjr + 2Pr · js − 2Ps · jr) . (A16)

From Eqs. (A12)–(A15) one finally gets the expression of Qrs:

Qrs =
ωrs

ρs

µsr

d(d + 2)
(1 + αsr) {[µsr(1 + αrs) (d + 8 − 3µsr(1 + αrs)) − 3(d + 2)] ρsqr

+3µ2
sr(1 + αsr)

2ρrqs +
d

2
[µsr(1 + αrs) (3µsr(1 + αrs) − 4) + d + 2] prjs

+
d

2
µsr(1 + αrs) [d + 4 − 3µsr(1 + αrs)] psjr

+ [µsr(1 + αrs) (3µsr(1 + αrs) − (d + 6)) + d + 2]Pr · js
+µsr(1 + αrs) [2 − 3µsr(1 + αrs)] Ps · jr} , (A17)

where pr = nrTr. In the absence of diffusion and for mechanically equivalent particles, the collisional moment Qrs ≡ Q

reduces to

Q = −ω
(d − 1)

d(d + 2)
(1 + α)

[
1 +

d + 8

d − 1

1 − α

4

]
q. (A18)

This expression coincides with the one previously derived in the monocomponent case.16

Finally, let us evaluate the (dimensionless) collision integral of v4 in the HCS, Eq. (37):

Λrs ≡
∫

dv∗v∗4J∗
rs[Φr, Φs]

=
ω∗

rs

Ωd

∫
dv∗

2

∫
dσ̂Φr(v

∗
1)Φs(v

∗
2)

(
v′′∗41 − v∗41

)
, (A19)

where use has been made of the property (A4). Henceforth, we will use dimensionless quantities and, for the sake of
simplicity, the asterisks will be deleted. The scattering rule (A5) gives

v′′41 − v4
1 = 2µ2

sr(1 + αrs)
2(σ̂ · g12)

2

[
2(σ̂ · v1)

2 + 2v2
1 +

µ2
sr

2
(1 + αrs)

2(σ̂ · g12)
2

]

−4µsr(1 + αrs)(σ̂ · g12)(σ̂ · v1)
[
v2
1 + µ2

sr(1 + αrs)
2(σ̂ · g12)

2
]
. (A20)

Equations (A8)–(A10) allows the angular integral to be performed with the result

∫
dσ̂

(
v′′41 − v4

1

)
=

4B2

d + 2
µ2

sr(1 + αrs)
2

[
2(v1 · g12)

2 +
d + 4

2
g2
12v

2
1 +

3

4
µ2

sr(1 + αrs)
2g4

12

]

− 4B2

d + 2
µsr(1 + αrs)(v1 · g12)

[
(d + 2)v2

1 + 3µ2
sr(1 + αrs)

2g2
12

]
. (A21)

Therefore, the collision integral Λrs can be written as

Λrs =
ωrs

Ωd
B2µ

2
sr(1 + αrs)

2

∫
dv1

∫
dv2Φr(v1)Φs(v2)

×
{

1

d + 2

[
2(d + 8) − 12µsr(1 + αrs) + 3µ2

sr(1 + αrs)
2 − 4(d + 2)

µsr(1 + αrs)

]
v4
1

+3
µ2

sr(1 + αrs)
2

d + 2
v4
2 +

2

d

[
d + 2 − 6µsr(1 + αrs) + 3µ2

sr(1 + αrs)
2
]
v2
1v

2
2

}
. (A22)
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Finally, by taking into account that

∫
dvv2Φr(v) =

d

2
θ−1

r , (A23)

we get

Λrs =
µsr(1 + αrs)

d(d + 2)
ω∗

rs

{
3µ3

sr(1 + αrs)
3〈v∗4〉s

+
[
2d + 3µ2

sr(1 + αrs)
2 − 6µsr(1 + αrs) + 4

]
[µsr(1 + αrs) − 2] 〈v∗4〉r

+
d(d + 2)

4
µsrθ

−1
r θ1

s(1 + αrs) [2d + 4 + 6µsr(1 + αrs)

× (µsr(1 + αrs) − 2)]} . (A24)

In the one-dimensional case (d = 1), Eq. (A24) agrees with the results derived in Ref. 32 for the scalar Maxwell model
(i.e., with ω∗

rs ∝ xs). In addition, for mechanically equivalent particles, the results of the single gas are recovered,
namely,16

Λrs ≡ Λ =
ω

23d(d + 2)
(1 + α)

{[
12α2(α − 1) + 4α(4d + 17) − 12(3 + 4d)

〈
v4〉]

+
d(d + 2)

4
(1 + α)(4d − 1 − 6α + 3α2)

}
. (A25)

APPENDIX B: DERIVATION OF THE TRANSPORT COEFFICIENTS

In this Appendix we will provide some details on the calculation of the Navier-Stokes transport coefficients appearing
in the expressions (40)–(42) of the irreversible fluxes. Let us consider each flux separately.

1. Mass flux

To first order, the mass flux j
(1)
1 is defined as

j
(1)
1 = m1

∫
dvVf

(1)
1 (v). (B1)

To get this flux from Eq. (55), we need the collisional integral of m1V which has been evaluated in the Appendix A.
From the linearization of Eq. (A1), one has the result

∫
dvm1V

(
L1f

(1)
1 + M1f

(1)
2

)
= νj

(1)
1 , (B2)

where ν is the collision frequency

ν =
ρω12

dρ2
µ21(1 + α12) =

4

d

ρ

n(m1 + m2)

(
θ1 + θ2

θ1θ2

)1/2

ν0(1 + α12), (B3)

and use has been made of Eq. (22) in the second equality. Next, we multiply both sides of Eq. (55) by m1V and
integrate over V. The result is

(
∂

(0)
t + ν

)
j
(1)
1 = −p

(
∂

∂x1
x1γ1

)

p,T

∇x1 −
n1T1

p

(
1 − m1p

ρT1

)
∇p. (B4)

Note that the temperature ratio γ1 depends on the hydrodynamic state through the concentration x1. The functional
dependence of γ1 on x1 can be obtained from the HCS condition (29) by using the expressions (27) for the partial

cooling rates ζ
(0)
r .
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The mass flux has the structure given by Eq. (40). Dimensional analysis shows that D ∝ T 1/2, Dp ∝ T 1/2/p, and

D′ ∝ T 1/2. Consequently,

∂
(0)
t j

(1)
1 = −ζ(0) (T∂T + p∂p) j

(1)
1

=

[
m1m2n

2ρ
ζ(0)D + ρ(Dp + D′)

(
∂ζ(0)

∂x1

)

p,T

]
∇x1

+
ρζ(0)

p

(
3

2
Dp + D′

)
∇p − ρζ(0)

2T
Dp∇T. (B5)

Upon deriving this expression use has been made of the identities

∂
(0)
t ∇T = −∇

(
Tζ(0)

)
= −ζ(0)∇T − T∇ζ(0)

= −ζ(0)

2
∇T − T

[(
∂ζ(0)

∂x1

)

p,T

∇x1 +
ζ(0)

p
∇p

]
, (B6)

∂
(0)
t ∇p = −∇

(
pζ(0)

)
= −ζ(0)∇p − p∇ζ(0)

= −2ζ(0)∇p − p

[(
∂ζ(0)

∂x1

)

p,T

∇x1 −
ζ(0)

2T
∇T

]
, (B7)

where we have taken into account that

∇ζ(0) =

(
∂ζ(0)

∂x1

)

p,T

∇x1 +

(
∂ζ(0)

∂p

)

x1,T

∇p +

(
∂ζ(0)

∂T

)

x1,p

∇T

=

(
∂ζ(0)

∂x1

)

p,T

∇x1 +
ζ(0)

p
∇p − ζ(0)

2T
∇T, (B8)

the two latter terms coming from ζ(0) ∝ nT 1/2 = pT−1/2. Inserting Eq. (B5) into Eq. (B4), one gets the expressions
(60), (61), and (62) for the coefficients D, Dp, and D′, respectively.

2. Pressure tensor

The pressure tensor P
(1) can be written as

P
(1) = P

(1)
1 + P

(1)
2 , (B9)

where the partial contribution P
(1)
r to the pressure tensor is

P
(1)
r = mr

∫
dvVVf (1)

r (v). (B10)

The linearization of Eq. (A2) leads to the following expression for the collisional integral of m1VV:

∫
dvm1VV

(
L1f

(1)
1 + M1f

(1)
2

)
= τ11P

(1)
1 + τ12P

(1)
2 , (B11)

where

τ11 =
ω11

d(d + 2)
(1 + α11)(d + 1 − α11) + 2

ω12

d
µ21(1 + α12)

[
1 − µ21(1 + α12)

d + 2

]
, (B12)

τ12 = −2
ω12

d(d + 2)

ρ1

ρ2
µ2

21(1 + α12)
2. (B13)
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Now, we multiply both sides of Eq. (55) (with r = 1) by m1VV and integrate over V to get

(
∂

(0)
t + τ11

)
P

(1)
1,ij + τ12P

(1)
2,ij = −p1∆ijkℓ∇kuℓ, (B14)

where p1 = n1T1 and

∆ijkℓ ≡ δikδjℓ + δiℓδjk − 2

d
δijδkℓ. (B15)

A similar equation can be obtained for P
(1)
2 from (B14) by interchanging 1 ↔ 2. The solution to Eq. (B14) (and its

corresponding counterpart) has the form

P
(1)
r,ij = −ηr∆ijkℓ∇kuℓ. (B16)

According to Eq. (42), the shear viscosity coefficient η is given in terms of the coefficients ηr by

η = η1 + η2. (B17)

Dimensional analysis requires that ηr ∝ T 1/2 and so,

∂
(0)
t P

(1)
r = −ζ(0)

2
P

(1)
r . (B18)

Insertion of this relation into Eq. (B14) yields the following set of coupled equations for the two coefficients ηr:

(
τ11 − 1

2ζ(0) τ12

τ21 τ22 − 1
2ζ(0)

) (
η1

η2

)
=

(
p1

p2

)
. (B19)

Its solution is given by Eq. (68).

3. Heat flux

The heat flux q(1) can be written as

q(1) = q
(1)
1 + q

(1)
2 , (B20)

where the partial contribution q
(1)
r is given by

q(1)
r =

mr

2

∫
dvV 2Vf (1)

r (v). (B21)

To get the explicit expressions for the fluxes q
(1)
r we proceed in a similar way as in the case of the pressure tensor.

First, linearization of Eq. (A17) leads to

∫
dv

m1

2
V 2V

(
L1f

(1)
1 + M1f

(1)
2

)
= β11q

(1)
1 + β12q

(1)
2 + A12j

(1)
1 , (B22)

where

β11 = −ω11

4

(1 + α11)

d(d + 2)
[α11(d + 8) − 5d − 4] − ω12µ21

(1 + α12)

d(d + 2)

×{µ21(1 + α12) [d + 8 − 3µ21(1 + α12)] − 3(d + 2)} , (B23)

β12 = −3ω12µ
3
21

(1 + α12)
3

d(d + 2)

ρ1

ρ2
, (B24)
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A12 = −ω11

8

(1 + α11)

d(d + 2)

[
α11(d

2 − 2d − 8) + 3d(d + 2)
] T1

m1
− ω12

2
µ21

(1 + α12)

d

×
{

µ21(1 + α12) [d − 3µ21(1 + α12) + 2]
T2

m2

−x1

x2

[
d + 3µ2

21(1 + α12)
2 − 6µ21(1 + α12) + 2

] T1

m2

}
. (B25)

Upon writing Eq. (B22) use has been made of the relation j
(1)
1 = −j

(1)
2 . The corresponding expressions for β22, β21,

and A21 can be easily obtained from Eqs. (B23)–(B25) by the change 1 ↔ 2. From Eq. (55), one gets

(
∂

(0)
t + β11

)
q

(1)
1 + β12q

(1)
2 = −A12j

(1)
1 − d + 2

2

nT 2

m1

∂

∂x1

[(
1 +

c1

2

)
x1γ

2
1

]
∇x1

−d + 2

2

n1T
2
1

m1p

(
1 − m1p

ρT1
+

c1

2

)
∇p

−d + 2

2

n1T
2
1

m1T

(
1 +

c1

2

)
∇T, (B26)

where

cr =
2

d(d + 2)

m2
r

nrT 2
r

∫
dvV 4f (0)

r − 2. (B27)

The coefficients cr have been obtained in Section III.
The solution to Eq. (B26) can be written as

q(1)
r = −T 2D′′

r∇x1 − Lr∇p − λr∇T. (B28)

The total heat flux defines the transport coefficients D′′, L, and λ through Eq. (41). According to Eqs. (B20) and
(B28), these transport coefficients are given in terms of their partial contributions D′′

r , Lr, and λr as

D′′ = D′′
1 + D′′

2 , L = L1 + L2, λ = λ1 + λ2. (B29)

From dimensional analysis, D′′
r ∝ T−1/2, Lr ∝ T 3/2/p, and λr ∝ T 1/2. Consequently,

∂
(0)
t q(1)

r =

[
3

2
ζ(0)T 2D′′

r +

(
∂ζ(0)

∂x1

)

p,T

(pLr + Tλr)

]
∇x1

+ζ(0)

(
5

2
Lr +

Tλr

p

)
∇p + ζ(0)

(
λr −

pLr

2T

)
∇T. (B30)

Substitution of Eq. (B30) into Eq. (B26) and taking into account the expression (40) for the mass flux, one arrives at
the coupled set of equations (72) for the partial contributions D′′

r , Lr, and λr.
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