
4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 1 of 6

Teaching computational thinking to space science students
Robert Jeffrey12, Megan Lundy2, Deirdre Coffey2, Sheila McBreen2, Antonio Martin-Carrillo2,

Lorraine Hanlon2

__

Abstract
Computational thinking is a key skill for space science graduates, who must apply advanced
problem-solving skills to model complex systems, analyse big data sets, and develop control
software for mission-critical space systems. We describe our work using Design Thinking to
understand the challenges that students face in learning these skills. In the MSc Space
Science & Technology at University College Dublin, we have used insights from this process
to develop new teaching strategies, including improved assessment rubrics, supported by
workshops promoting collaborative programming techniques. We argue that postgraduate-
level space science courses play a valuable role in developing more advanced computational
skills in early-career space scientists.

Keywords
Space Education; Postgraduate Education; Computational Thinking
__

Acronyms/Abbreviations
UCD University College, Dublin

SS&T Space Science & Technology

1. Introduction
Computational thinking has been identified as a
key skill for 21st century graduates. It refers to
the ways we think when we design computer
programs to solve problems [1] [2]. This should
be distinguished from “coding” or “computing”
[3], which means implementing a solution in a
specific programming language.

While computational thinking is an increasingly
influential idea in education [3] [4], it has always
played a key role in solving problems in space
science. Modern space scientists will use it for
Earth observation, data analysis, and flight
system control, with space software a major
area of growth in the space industry [10].
However, little has been written on how space
science education helps early-career space
scientists to develop these skills.

1.1. Computation & the MSc Space Science
& Technology at UCD

The MSc in Space Science & Technology
(SS&T) at University College Dublin (UCD) is a

1 Corresponding author: Robert.Jeffrey@ucd.ie
2 School of Physics & UCD Centre for Space Research, University College Dublin, Ireland

taught program designed to prepare science
and engineering graduates for careers in the
global space sector.

A typical cohort consists of 12–16 students,
most of whom are recent graduates from Irish
universities. Typically, 20–30% of the class are
female. Approximately one third of the class are
international students and about 10% join after
a period working in industry. Most students
have degrees in physics or astrophysics (about
60%) or engineering (about 30%, usually
aerospace or electrical engineering).

The 12-month course consists of a total of 90
ECTS credits. It includes classroom-based
modules covering the space environment,
applications of space science, and professional
development, as well as optional modules on
Earth-observation, climate physics, advanced
astronomy and astrophysics, and data science.
Three 10-credit laboratory or project-based
modules cover space detectors, CubeSats,
applied systems engineering and space mission
design. A final 30-credit 12-week internship with
a space agency, company, or research group
leads to a minor thesis and presentation.

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 2 of 6

Programming plays important and varied roles
in many of these modules. Students write short
programs to do calculations on homework
assignments, and develop longer, complex
programs to control complex space systems.
They write data processing pipelines to
calibrate and characterise gamma-ray detectors
in the Space Detector Lab. They design and
simulate space telescopes. In the Satellite
Subsystems Laboratory, they write software to
interface to our CubeSat simulator, EduCube
[5], and to control their own “TupperSats” –
Raspberry Pi-based experimental payloads that
they fly on high-altitude balloons [6].

While computational ability is an essential skill
in the SS&T course, it is often not an explicitly
assessed learning outcome. For example, the
learning outcomes of the TupperSat project
focus on understanding the space mission life
cycle and systems-engineering processes.
Since space project teams need software
expertise as much they need mathematical or
written skills, students need appropriate support
to develop these computational skills.

We encourage our students to use Python to
solve these problems, and students need to use
advanced programming techniques, including
handling large data sets, concurrency, object
orientation, and exception handling. To solve
problems of this scope and complexity, students
must also learn to think clearly and creatively
about what they are doing: they must learn
computational thinking, as well as how to code.

From talking to our alumni and employers, we
know that our students value the computational
skills that they develop during the course as
they move into industry. But we also know that
they find the learning curve steep, with
expectations set far higher than they are used
to as undergraduates. We see this as
instructors: often, students’ progress early in the
course is slowed to learn these core skills.

This sets the aim of this work: to better
understand our students’ needs and challenges
developing the level of programming and
computational skill needed to succeed on the
course and in the space sector. We can do this
with a user-focused, design thinking framework.

2. Methods — Design Thinking
Design Thinking is a creative problem-solving
approach used in industry and education to
improve user experiences. It is often framed as

a sequence of stages or mindsets: “empathise,
define the problem, ideate, prototype, test” [7],
or “inspiration, ideation, implementation” [8].
These all capture a general principle: you must
understand your user before you can
understand their problems, and you must
understand the problem before you can solve it.

Using this idea, we divided our work into three
steps: understanding our students, defining the
problem, and implementing solutions.

3. Step I — Understanding Our Students
The first step in our design process is to
empathise with our students, to understand
their needs, views and experiences on the MSc
SS&T. To do this, we surveyed students who
completed the course between 2018 and 2021.

The anonymised questionnaire consisted of 33
questions divided into sections covering
students’ prior experience, the course itself, and
their reflections looking back from their current
career position. Some questions were posed as
(numerical or verbal) rating scales, (eg., asking
students to rate their confidence in a skill), but
most used more open-ended written responses,
to elicit students’ experiences or perceptions.

The 4 cohorts contacted included 56 students,
and we received responses from 29 students.
We reviewed the responses with respect to
several key questions:

1. what do incoming students know?
2. what do students do after the course?
3. what do students find helpful?
4. what do students find challenging?
5. what do students expect on the course?

We used students’ quantitative responses (as
shown, for example, in Figures 1–3), supported
by select quotations from their written
responses. We focused on identifying common
themes and challenges from across the written
responses by affinity mapping [9].

3.1. What do incoming students know?
All respondents reported some prior
programming experience, across a range of
languages, but few students claim to have been
confident programmers before joining the
course (Fig. 1). One respondent specifically
noted that they had been “over-confident” in
their abilities, while another “didn’t realise that
[they] knew as little as [they] did”.

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 3 of 6

Figure 1. Space-science students self-assessed
programming confidence before and after the

MSc SS&T (scale 0 - 4)

Figure 2. Programming languages used by our

incoming students, and graduates.

Figure 3. What do space-science students use

computing for?

Nearly three quarters of students had used
Python (Fig. 2), mostly for processing, analysis,
and visualisation of laboratory data, or as part
of an undergraduate research project. Almost
two thirds had used C or C++ (often with
Arduino microcontrollers), but students were
less familiar with these languages. A small
number had used technical or statistical
software (eg., R, SAS).

Although most students (16 out of 29) had taken
dedicated programming modules, this is not
reflected in their written responses, which
emphasise learning by writing code in labs.
Formal programming classes appear

disconnected from the rest of their learning; two
respondents noted that after taking a course in
C++ or Java, they “never used it again”.

In general, most students’ experience comes
from data analysis or visualisation in labs.
Figure 3 shows that this is the only
programming application that students report as
an often or always present part of their
undergraduate experience. Most students have
some experience with embedded programming,
but usually only associated with a single project.

We supplemented this picture with a brief
review of publicly available information on
programming in physics and engineering at a
selection of universities in Ireland and the UK.
The general qualitative picture is that physics
students’ prior knowledge is narrow and deep,
while engineering students’ prior knowledge is
broader and shallower. Students from a physics
background typically have experience using
Python for data analysis in undergraduate
laboratories throughout their degree, with
occasional courses in C/C++. Students from
engineering courses tend to have used a wider
range of languages (often including MATLAB,
Excel or C), for a wider range of purposes
(including modelling and numerical methods),
but often only in the early years of their course.

3.2. What do students do after the course?
All respondents said that their confidence in
their abilities increased after the course (Fig. 1).
Figure 3 shows that computation is a routine
part of their work. Three quarters of graduates
use computers for data analysis often or all the
time. Significant minorities of graduates use
simulation or software development often or all
the time, with a noticeable increase compared
to undergraduate experiences (Fig. 3).

The course’s emphasis on Python appears
justified, as clearly the most popular language.
It is used almost universally by respondents,
with one noting that it was “considered a default
requirement” when applying for jobs.

When asked to identify gaps in their learning,
graduates want more experience with advanced
technical skills. This includes a wider selection
of languages (especially C++, although SQL, R
and Ada were mentioned), advanced
paradigms (especially object-orientation, which
the course introduces briefly), and machine
learning (which 5 students identified as a
significant part of their career). Graduates

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 4 of 6

reported that the course gave them a “much
more realistic expectation of what to expect to
do in the workplace”, but they want to develop
skills including a better understanding of the
software development cycle, and of what
professional, production code should look like.

3.3. What do students find helpful?
About half of responses identify the software
development for their balloon experiment as the
most useful part of the course, highlighting its
scope and complexity (“the most complex
coding project I had engaged with”), the need
for robustness (“[creating] code that…would
work every time”), the new technical skills learnt
(particularly object-oriented programming and
concurrency), and “the importance of clarity in
code for collaborative programming”.

Students mentioned “structuring code” most
often as the most valuable skill that they
developed during the course. They mention that
this helps with “better layout”, with writing “good
code that… can be read easily”, and with “trying
to break…problems into smaller chunks”. They
identify its role in enabling collaboration, noting
that “being able to explain code to others… is
much easier when code is structured neatly”.
and that “compartmentalisation…simplifies
comprehension for larger projects”.

Generally, these comments about collaboration
and structure suggest that graduates see a gap
between the simple problems they meet as
undergraduates and the more complex
problems they face in industry or research, and
that they need help to cross this gap.

3.4. What do students find challenging?
The responses show that students find the
amount of new material and the steep learning
curve challenging. A quarter of respondents
identified “adapting to a relatively new
language”, knowing what level of ability was
expected, or finding appropriate resources as a
source of difficulty at the start of the course. A
similar number of students identified difficulty
learning more advanced skills (eg., model
fitting, objects, and embedded systems).

Students also identified challenges in the step
up to more complex and open problems, in
which you “really had to think for yourself” to
come up with solutions, and where the program
structure needs to be considered as part of this.

3.5. What do students expect on the course?

Students generally appear to be surprised by
the level and nature of the programming that
they encounter on the course. 15 respondents
mention that there was more than they
expected, while only 1 said there was less
(specifically, less low-level programming). Five
respondents commented that they “ultimately
really appreciated” the amount of programming
on the course, suggesting that although they
find the process (unexpectedly) difficult, they
can see the benefit on reflection.

Four respondents said that the type of
programming that they were asked to do was
unexpected. They “expected to spend most…
time on data analysis”, but that the course
“moved away from analysis”. The “software
development was a lot harder than [they]
expected”, but they feel that they can apply
skills to “more real-world tasks now”. This again
suggests that undergraduate courses cover a
narrower range of applications and skills than
graduates use in the space sector.

4. Step II — Defining the Problem
In the next step in the design thinking process,
we identify the problem to be solved. By
reviewing the student responses, we have built
a clearer picture of a typical space-science
student’s experience, wants and needs.
Through our affinity mapping exercise, we then
identified a set of emergent themes, each
framed as a problem experienced by students:

1. what is good code? Students are
unclear what makes code “good”, and
how to implement good practice.

2. managing expectations – students are
surprised by the level and nature of
programming required by the course.

3. learning the basics – students find it
difficult to learn the Python language at
the same time as course material.

4. finding support – students want help to
find additional learning resources.

5. managing larger problems – students
struggle to manage the amount of data
generated in the Space Detector Lab,
and to adapt to the larger project scope
in the Satellite Subsystems lab.

6. learning advanced skills – students find
it difficult to learn the more advanced
programming techniques that they use
on the course.

Addressing these problem statements will form
the basis of our course development work.

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 5 of 6

5. Step III — Implementing Solutions
The last three stages in the design process —
ideation, prototyping, and testing — cover
finding and implementing solutions to the
problem(s) that we have defined. Using these
problem statements and drawing inspiration
from the students’ questionnaire responses, we
have trialled several interventions within the
course in the current 2021-22 academic year.

5.1. Improved Assessment Rubrics
We have introduced a new assessment rubric
for code submissions, to address students’
uncertainty about what makes good code.

The assessment rubric is based around 3
criteria: functionality, structure, and style. Each
criterion assesses a distinct aspect of thinking
about code. Functionality assesses how well
the code does what it needs to do. The structure
rubric assesses the organisation of code, with
credit for code that is logical, flexible, and
reusable, that uses compartmentalisation and
abstraction appropriately, and that separates
what is being done from how it is done. Style
assesses how professionally the code is written,
including readability, effective documentation,
consistent styling, and writing idiomatic code.

By giving equal credit to these three areas, we
encourage students to think about both what
their code does and how it is put together.

5.2. “Writing Programs in Python” Workshop
We ran a 3-hour introductory workshop to
support this rubric, illustrating our expectations
using a series of paired-development exercises.

The workshop consists of 3 activities. First,
students are placed in pairs to peer-review
another student’s solution to a short pre-class
coding exercise. The instructor then leads a
class discussion on helpful and unhelpful
practices in programming. They introduce the
assessment rubric, with a live demonstration to
illustrate how to transform bad code to good.
Finally, the class divides into pairs for a pair-
programming exercise based on the popular
“FizzBuzz” problem [11]. In this activity, pairs of
students act alternately as programmer and
reviewer in short (6 minute) programming
sprints, with the reviewer guided to look at the
structure and style of students’ solutions.

Using collaborative exercises helps students
learn to write code that communicates their
intentions. Students see what makes good code

by watching someone else write code, learning
from the strengths and weaknesses of their
practice, using the rubric as a guide. Introducing
pair programming and code review also helps
students to learn the professional skills needed
to work as part of a software team, a skill which
our graduates valued in their own careers.

6. Discussion
6.1. Who are our students?
We can use our empathetic research in Section
3 to build up a profile of a “typical” member of
the Space Science & Technology cohort.

Our typical student has previously used Python
(or possibly MATLAB) for data analysis but has
very little formal computing education. They like
that the course teaches them code structure
and collaboration, and they like learning
advanced topics (including object-oriented
programming and machine learning). They find
that they struggle with the learning curve at the
start of the course, and they are unclear about
what is expected of them as a programmer.

Of course, this profile comes with the obvious
caveat that it does not attempt to capture the
academic and social diversity that our students
bring to the course, and we must be mindful that
any solution based on it cannot be a one-size-
fits-all answer. Nevertheless, it suggests that
postgraduate space science courses should not
be afraid to emphasise advanced computational
skills, but cannot assume students will have
more than basic familiarity with coding.

6.2. What special programming skills do
space science students need?

There is a gap between the programming skills
our students learn on undergraduate courses,
and the skills they need in industry. We can see
this in the number of responses identifying
“structure” as the most important skill they learn
from our course. This tells us that students’
previous experiences may have given them the
basic literacy needed to complete small data
analysis tasks, but have not prepared them to
think about and solve the larger and more varied
software development and data analysis
problems they meet in the space sector.

Postgraduate space-science courses have an
important role here. As well as teaching
students space-sector specific knowledge and
skills, they introduce students to the more
complex computational problems that they may

4th Symposium on Space Educational Activities
Barcelona, April 2022

 Page 6 of 6

encounter as graduates working in software
teams. Indeed, when students talk about
learning to structure code, they often mean
learning how to think about code – that is,
computational thinking.

6.3. How well did it work? What next?
The design thinking process encourages
reflection and iteration, and there are lessons to
be learnt from this exercise for future years.

The rubric was used throughout the first
semester lab modules to guide students and
give feedback. This has enabled more focused
discussions with students as they developed
their code, and simplified giving feedback.

From our (qualitative) observation of this year’s
cohort so far, students have taken onboard our
emphasis on professionalism in their code
development, suggesting that the emphasis on
style and structure has worked. For example,
we have seen more instances of students
discussing their code together or using
whiteboards and flow diagrams to plan out and
structure their code before they write it.

Although students have a clearer understanding
of the level that they will be expected to achieve,
we have not yet addressed the challenges
faced by those students learning to code with
little or no prior experience. We expect students
to prepare for the course by familiarising
themselves with the fundamentals of the Python
language, but find that this is done
inconsistently. This is a harder problem to solve:
the obvious solutions involve finding additional
resources (by providing a pre-course training
camp on Python), or compromising other parts
of the course (by reducing space-science
specific learning outcomes). We are looking at
technology-enabled solutions to help incoming
students reach a clearer common baseline.

Lastly, we have focused here on the needs and
experiences of students and recent graduates.
However, other stakeholders will need to
contribute to developing best practice. Most
notably, we will need industry input to identify
the most useful technical and professional
computational skills for new space-scientists.

7. Conclusions
Our work on teaching programming on the MSc
Space Science & Technology at UCD provides
a case study in using design thinking processes
in education. This has helped us to identify

some challenges our students face developing
computational thinking skills as they move from
higher education into industry, especially in
understanding the higher standards, greater
complexity, and wider variety of programming
problems that they encounter as early-career
space scientists. We have briefly described
possible ways to use clearer expectations to
smooth this transition, but this is an evolving
area where best-practice has yet to emerge.

Acknowledgements
We thank UCD School of Physics for supporting
this work, and the MSc SS&T students for their
insights, engagement and enthusiasm.

References
[1] A. Aho, Computation and Computational

Thinking, Ubiquity, January, (2011).

[2] P. Denning, Remaining trouble spots with
computational thinking, Comm. ACM,
60:6 33–39 (2017).

[3] Y. Li et al., Computational Thinking Is
More about Thinking than Computing,
STEM Educ Res, 3, 1-18, (2020).

[4] M. Lodi & S. Martini, Computational
Thinking, Between Papert and Wing, Sci
& Educ 30, 883–908 (2021).

[5] D. Murphy et al., EduCube: The 1U
Educational CubeSat, 2nd Symposium
on Space Educational Activities,
Budapest, (2018).

[6] D. Murphy et al., TupperSats: Thinking
Inside the Box for Space Systems
Engineering, 70th International
Astronautical Congress, Washington
D.C., USA, (2019).

[7] Hasso Plattner Institute of Design:
dschool.stanford.edu/resources/design-
thinking-bootleg last visited: 2022-03-20.

[8] T. Brown, B. Katz, Change By Design,
Harper Business (New York), (2009).

[9] Interaction Design Foundation:
interaction-design.org/literature/topics/aff
inity-diagrams, last visited: 2022-03-20.

[10] UK Space Agency, Space Sector Skills
Survey 2020: Research Report, UK Govt,
(2021).

[11] T. Scott, youtu.be/QPZ0pIK_wsc. Last
visited: 2022-03-20.

