20 research outputs found

    Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense

    Get PDF
    Endophytic fungi live asymptomatically within plants. They are usually regarded as non-pathogenic or even mutualistic, but whether plants respond antagonistically to their presence remains unclear, particularly in the little-studied associations between endophytes and nong-raminoid herbaceous plants. We investigated the effects of the endophyte Chaetomium cochlioides on leaf chemistry in Cirsium arvense. Plants were sprayed with spores; leaf material from both subsequent new growth and the sprayed leaves was analysed 2 wk later. Infection frequency was 91% and63% for sprayed and new growth, respectively, indicating that C. cochlioides rapidly infects new foliage. Metabolomic analyses revealed marked changes in leaf chemistry with infection, especially in new growth. Changes in several novel oxylipin metabolites were detected, including arabi-dopsides reported here for the first time in a plant species other than Arabidopsis thaliana,and a jasmonate-containing galactolipid. The production of these metabolites in response to endophyte presence, particularly in newly infected foliage, suggests that endophytes elicit similar chemical responses in plants to those usually produced following wounding, herbivory and pathogen invasion. Whether en-dophytes benefit their hosts may depend on a complex series of chemically mediated interactions between the plant, the endophyte, other microbial colonists and natural enemies

    Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn

    Get PDF
    Hydromethanolic extracts of brown, red, and white sorghum whole grains were analysed by LC-MSn in negative ESI mode within the range m/z 150–550 amu. Besides the flavonoids already reported in sorghum, a number of flavonoids were also identified in the sorghum grain for the first time, including flavanones, flavonols and flavanonols, and flavan-3-ol derivatives. Various phenylpropane glycerides were also found in the sorghum grain, the majority of them are reported here for the first time, and a few of them were detected with abundant peaks in the extracts, indicating they are another important class of phenolic compounds in sorghum. In addition, phenolamides were also found in sorghum grain, which have not been reported before, and dicaffeoyl spermidine was detected in high abundance in the extracts of all three type sorghum grains. These results confirmed that sorghum is a rich source of various phenolic compounds

    Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2.

    Get PDF
    In microorganisms hydroxy fatty acids are produced from the biotransformation of unsaturated fatty acids. Such compounds belong to a class of oxylipins which are reported to perform a variety of biological functions such as anti-inflammatory or cytotoxic activity. These compounds have been found in rice and timothy plants after being infected by specific fungus. When grown in submerged culture with linoleic acid, Pseudomonas 42A2 accumulated in the supernatant several hydroxy fatty acids. In this work LC-MS/MS has been used to elucidate the structure of the components form the organic extract: 9-hydroxy-10,12-octadecadienoic acid; 13-hydroxy-9,11-octadecadienoic acid; 7,10-dihydroxy-8E-octadecenoic acid; 9,10,13-trihydroxy-11-octadecenoic acid and 9,12,13-trihydroxy-10-octadecenoic acid. Antimicrobial activity against several pathogenic fungal strains is presented: MIC (microg/mL) Verticillium dhaliae, 32; Macrophonia phaesolina, 32; Arthroderma uncinatum, 32; Trycophyton mentagrophytes, 64
    corecore