5,098 research outputs found

    From colloidal dispersions to colloidal pastesthrough solid–liquid separation processes

    Get PDF
    Solid–liquid separation is an operation that starts with a dispersion of solid particles in a liquid and removes some of the liquid from the particles, producing a concentrated solid paste and a clean liquid phase. It is similar to thermodynamic processes where pressure is applied to a system in order to reduce its volume. In dispersions, the resistance to this osmotic compression depends on interactions between the dispersed particles. The first part of this work deals with dispersions of repelling particles, which are either silica nanoparticles or synthetic clay platelets, dispersed in aqueous solutions. In these conditions, each particle is surrounded by an ionic layer, which repels other ionic layers. This results in a structure with strong short-range order. At high particle volume fractions, the overlap of ionic layers generates large osmotic pressures; these pressures may be calculated, through the cell model, as the cost of reducing the volume of each cell. The variation of osmotic pressure with volume fraction is the equation of state of the dispersion. The second part of this work deals with dispersions of aggregated particles, which are silica nanoparticles, dispersed in water and flocculated by multivalent cations. This produces large bushy aggregates, with fractal structures that are maintained through interparticle surface– surface bonds. As the paste is submitted to osmotic pressures, small relative displacements of the aggregated particles lead to structural collapse. The final structure is made of a dense skeleton immersed in a nearly homogeneous matrix of aggregated particles. The variation of osmotic resistance with volume fraction is the compression law of the paste; it may be calculated through a numerical model that takes into account the noncentral interparticle forces. According to this model, the response of aggregated pastes to applied stress may be controlled through the manipulation of interparticle adhesion

    Study of new systems concepts for a Titan atmospheric probe

    Get PDF
    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described

    BioGateway: a semantic systems biology tool for the life sciences

    Get PDF
    Background: Life scientists need help in coping with the plethora of fast growing and scattered knowledge resources. Ideally, this knowledge should be integrated in a form that allows them to pose complex questions that address the properties of biological systems, independently from the origin of the knowledge. Semantic Web technologies prove to be well suited for knowledge integration, knowledge production (hypothesis formulation), knowledge querying and knowledge maintenance. Results: We implemented a semantically integrated resource named BioGateway, comprising the entire set of the OBO foundry candidate ontologies, the GO annotation files, the SWISS-PROT protein set, the NCBI taxonomy and several in-house ontologies. BioGateway provides a single entry point to query these resources through SPARQL. It constitutes a key component for a Semantic Systems Biology approach to generate new hypotheses concerning systems properties. In the course of developing BioGateway, we faced challenges that are common to other projects that involve large datasets in diverse representations. We present a detailed analysis of the obstacles that had to be overcome in creating BioGateway. We demonstrate the potential of a comprehensive application of Semantic Web technologies to global biomedical data. Conclusion: The time is ripe for launching a community effort aimed at a wider acceptance and application of Semantic Web technologies in the life sciences. We call for the creation of a forum that strives to implement a truly semantic life science foundation for Semantic Systems Biology

    The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry

    Get PDF
    Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molecular and functional genomics studies that will be required to direct metabolic engineering efforts aimed at enhancing the quality and quantity of high value products from E. gracilis. The transcriptome contains over 30?000 protein-encoding genes, supporting metabolic pathways for lipids, amino acids, carbohydrates and vitamins, along with capabilities for polyketide and non-ribosomal peptide biosynthesis. The metabolic and environmental robustness of Euglena is supported by a substantial capacity for responding to biotic and abiotic stress: it has the capacity to deploy three separate pathways for vitamin C (ascorbate) production, as well as producing vitamin E (?-tocopherol) and, in addition to glutathione, the redox-active thiols nor-trypanothione and ovothiol

    Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water QualityModel simulations

    Get PDF
    BACKGROUND: Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor andmetolachlor oxanilic acid (OXA). RESULTS: The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4–5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on itsmeasured sorption coefficient, approximately twofold reductions in OXA losses were simulated with residue removal. CONCLUSION: The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine andmetolachlor in subsurface drainagewill increase owing to reduced sorption related tomorewatermoving through fewermacropores. Losses of the metolachlor degradation product OXA will decrease as a result of themore rapid movement of the parent compound into the soil

    Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches.

    Get PDF
    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into "motor" and "non-motor" regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure

    Determinants of isoniazid preventive therapy completion among people living with HIV attending care and treatment clinics from 2013 to 2017 in Dar es Salaam Region, Tanzania. A cross-sectional analytical study.

    Get PDF
    BACKGROUND: Tuberculosis (TB) disease is a common opportunistic infection among people living with HIV (PLHIV). WHO recommends at least 6 months of isoniazid Preventive Therapy (IPT) to reduce the risk of active TB. It is important to monitor the six-month IPT completion since a suboptimal dose may not protect PLHIV from TB infection. This study determined the six-month IPT completion and factors associated with six-month IPT completion among PLHIV aged 15 years or more in Dar es Salaam region, Tanzania. METHODS: Secondary analysis of routine data from PLHIV attending 58 care and treatment clinics in Dar es Salaam region was used. PLHIV, aged 15 years and above, who screened negative for TB symptoms and initiated IPT from January, 2013 to June, 2017 were recruited. Modified Poisson regression with robust standard errors was used to estimate prevalence ratios (PR) and 95% confidence interval (CI) for factors associated with IPT completion. Multilevel analysis was used to account for health facility random effects in order to estimate adjusted PR (APR) for factors associated with IPT six-month completion. RESULTS: A total of 29,382 PLHIV were initiated IPT, with 21,808 (74%) female. Overall 17,092 (58%) six-month IPT completion, increasing from 42% (773/1857) in year 2013 to 76% (2929/3856) in 2017. Multilevel multivariable model accounting for health facilities as clusters, showed PLHIV who were not on ART had 46% lower IPT completion compared to those were on ART (APR: 0.54: 95%CI: 0.45-0.64). There was 37% lower IPT completion among PLHIV who transferred from another clinic (APR: 0.63: 95% CI (0.54-0.74) compared to those who did not transfer. PLHIV aged 25-34 years had a 6% lower prevalence of IPT completion as compared to those aged 15 to 24 years (APR:0.94 95%CI:0.89-0.98). CONCLUSION: The IPT completion rate in PLHIV increased over time, but there was lower IPT completion in PLHIV who transferred from other clinics, who were aged 25 to 34 years and those not on ART. Interventions to support IPT in these groups are urgently needed
    corecore