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Corn stover harvest increases herbicide
movement to subsurface drains – Root Zone
Water Quality Model simulations
Martin J Shipitalo,a* Robert W Malone,a Liwang Ma,b Bernard T Nolan,c

Rameshwar S Kanwar,d Dale L Shanerb and Carl H Pedersond

Abstract

BACKGROUND: Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of
agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow
and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn
(Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on
transport of atrazine, metolachlor and metolachlor oxanilic acid (OXA).

RESULTS: The model accurately simulated field-measured metolachlor transport in drainage. A 3 year simulation indicated
that 50% residue removal reduced subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage
4–5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient,
approximately twofold reductions in OXA losses were simulated with residue removal.

CONCLUSION: The RZWQM indicated that, if corn stover harvest reduces crust conductivity and soil macroporosity, losses of
atrazine and metolachlor in subsurface drainage will increase owing to reduced sorption related to more water moving through
fewer macropores. Losses of the metolachlor degradation product OXA will decrease as a result of the more rapid movement of
the parent compound into the soil.
Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
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1 INTRODUCTION
A goal has been established to replace 30% of the current US
petroleum consumption with biomass-derived fuels by 2030.1 In
order to achieve this target; biomass will have to be obtained from
multiple feedstocks, including forestry resources, crop residues
and specifically grown bioenergy crops. In terms of crop residues,
the above-ground material left in the field after harvest of corn
grain, consisting of leaves, stalks and cobs, collectively referred to
as corn stover, has been identified as a major potential contributor
to the estimated billion tons of biomass needed to reach this
objective.1 – 3

Crop residues, however, provide numerous ecosystem services
and should not be considered a waste product.4 –6 These functions
include reducing wind and water erosion, replenishing soil organic
carbon and returning nutrients to the soil.6 Thus, the amount that
can be sustainably removed is limited by these environmental
and agronomic constraints. For example, Blanco-Canqui et al.7

observed negative effects on soil physical properties when more
than 25% of the stover was removed from some continuous no-till
corn fields in Ohio, whereas Sheehan et al.8 posit that negative
effects can be avoided when up to 70% is removed from no-till
fields in Iowa.

When left on the surface, crop residues protect soil from raindrop
impact and enhance aggregate stability by increasing soil organic

carbon content. Consequently, partial or complete removal of crop
residues can contribute to a decline in soil aggregate stability
and increased strength and formation of soil crusts, which con-
tribute to reduced hydraulic conductivity and infiltration rates.4

Additionally, retention of surface residues can result in a cooler
and wetter environment, which can increase earthworm activ-
ity and populations compared with situations in which residues
are incorporated by tillage.9,10 This was shown to be the case by
Blanco-Canqui et al.7 when they noted that earthworm midden
numbers, an indirect measure of earthworm populations, were
6–14 times greater when corn stover was retained than when it
was completely removed in one harvest cycle. A smaller reduc-
tion in measured earthworm numbers (32%) was noted by Karlen
et al.11 after 10 years of complete stover removal.
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The reduction in earthworm populations as a result of residue
removal, in turn, can result in decreased macropore formation.4

This loss of biologically produced macropores can also reduce soil
hydraulic conductivity and influence the fate of surface-applied
agrochemicals.12 Water flows at a greater velocity and to a greater
depth through macropores than when the entire soil matrix con-
tributes to flow. This reduces the amount of soil that entrained
solutes encounter and the contact time with the soil, which
reduces solute sorption. Thus, macropore flow can contribute to
increased leaching, particularly of strongly sorbed solutes.12,13

Among agrochemicals of particular concern for leaching are
atrazine [2-chloro-4-(ethylamino)-6-isopropylamino)-s-triazine]
and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-
(methoxy-1-methylethyl)acetamide], which are predominately
used to control weeds in corn.14 These are two of the four most
frequently detected pesticides in groundwater in agricultural and
urban areas reported by the US Geological Survey as part of their
national assessment of pesticides in streams and groundwater.14

Similarly, within Iowa, these are the most frequently detected
herbicides in groundwater.15

The fate of herbicide degradates also needs to be consid-
ered in order fully to understand the environmental impact
of corn stover harvest. Sorption studies have suggested that
two breakdown products of metolachlor are more mobile
than the parent compound and are more likely to con-
taminate surface and groundwater.16 Likewise, the USEPA17

considered metolachlor to be moderately to highly mobile
and the degradation product metolachlor oxanilic acid (OXA)
{2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-
2-oxoacetic acid} to be extremely mobile. In Iowa, two of the top
three herbicide compounds most frequently detected in ground-
water were metabolites of metolachlor.18 In contrast, atrazine was
detected more frequently than any of its transformation products.

Thus, in order more fully to assess the environmental impact
of corn stover harvest, the effects on water movement and the
transport of herbicides and their degradates to subsurface drains
need to be considered in light of its direct effects on soil crusting,
earthworm populations and soil macroporosity. A cost-effective
method to accomplish this objective, which is hard to achieve
experimentally because field data are often sparse and difficult to
collect, is to use a model that incorporates effects of management,
weather and soil properties on the movement of pesticides and
their breakdown products, considering degradation, sorption and
macropore flow.19 – 21

The Root Zone Water Quality Model (RZWQM) incorporates these
elements and has been successfully tested and used to simulate
pesticide and pesticide metabolite fate and transport in numerous
field and laboratory studies.19,22,23 Furthermore, the RZWQM has
recently been used for accurate simulation of metolachlor and OXA
fate in widely different soil and climatic conditions in Maryland
and Nebraska.24 Therefore, our objective was to combine mea-
sured weather data with information on atrazine and metolachlor
concentrations in subsurface drain flow and the sorption charac-
teristics of these herbicides and OXA from an experimental plot
in Iowa to predict the impact of stover harvest on losses of these
compounds in drain flow.

2 MATERIALS AND METHODS
2.1 Plot management and data collection
Data from a long-term, tilled plot (plot 13) at the Iowa State
University Northeastern Research Center near Nashua, Iowa, were

used in the study. Flow from a 10 cm diameter, plastic, subsurface
drain line installed in the center of the 0.4 ha plot at a depth of 120
cm in 1979 was directed into a sump so that water samples could
be periodically collected and flow rate electronically monitored
year round. Two drain lines installed on the borders of the plot
parallel to the center drain line and a 10 m wide uncultivated buffer
between adjacent plots helped to minimize cross-contamination.
Soils in the plot consisted of somewhat poorly drained Floyd loam
(fine-loamy, mixed, superactive, mesic Aquic Pachic Hapludoll)
and Readlyn loam (fine-loamy, mixed, superactive, mesic Aquic
Hapludoll) developed in sediment overlying glacial till. Maximum
slope in plot 13 was <2%, and surface run-off was not measured
but was reportedly minimal, based on measurements made at
other plots at the site.25 Soil samples were taken 4–5 times each
year to depths of up to 60 cm to determine the amount of
metolachlor retained in the soil. Further details on plot design,
operation and soil properties can be found in Kanwar et al.,26

Kumar et al.27 and Malone et al.28 and in the online database
available at http://apps.tucson.ars.ag.gov/nashua/.

Subsurface flow data for six calendar years (1990–1995) and
measured herbicide concentrations in drain flow from 1993 to
1995 were used in this study. Corn was planted in May of each year,
and post-harvest the plot was moldboard plowed for the first three
years and chisel tilled in subsequent years, except in 1991 when
wet soil conditions precluded plowing until the following spring.
Atrazine (0.6 kg AI ha−1) and metolachlor (2.8 kg AI ha−1) were
applied on 17 May 1993, 2 May 1994 and 16 May 1995 at planting.
Atrazine was applied prior to 1993, but metolachlor was not used
from 1990 to 1992. For the first 60 days after application, samples
for herbicide analysis were collected 3 times a week when there
was flow from the drain and composited weekly for analysis. After
60 days, sampling frequency was reduced to once a week if there
was flow. Weather data, including hourly rainfall, solar radiation
and daily minimum and maximum temperatures, were obtained
from an on-site station and supplemented with Iowa Mesonet
data.28

2.2 Model parameterization and calibration
We used the RZWQM (v.2.4), a one-dimensional, vertical model
that simulates crop management, plant growth and movement
of water, nutrients and pesticides in surface run-off, into ground-
water and through subsurface drainage. During infiltration, the
model divides the soil into 1 cm depth increments, and this water
is assigned the same chemical characteristics as overland flow.
Manual and automated parameter optimization was achieved
by linking the RZWQM to PEST: Model Independent Parameter
Estimation.29 The calibrated parameters used were exactly the
same as those reported for this same plot (plot 13) by Malone
et al.28 in a study in which effects of tillage and herbicide applica-
tion rate on atrazine movement to subsurface drains were inves-
tigated. In that study, the investigators noted that the atrazine
sorption coefficient was the most sensitive parameter affecting its
concentration in tile flow. Therefore, we collected four replicate
surface horizon soil samples from the plot and used a batch-slurry
technique to determine sorption coefficients (Kd) for metolachlor
and OXA.30 Measured sorption coefficients were divided by soil
organic carbon contents, determined using a combustion furnace,
to obtain the organic partition coefficients (Koc). The Koc for meto-
lachlor (200 mL g−1) was similar to the PEST-calibrated meto-
lachlor Koc (187 mL g−1) obtained by Nolan et al.24 for a field site
in Nebraska, whereas our measured value for OXA (57 mL g−1) was
substantially higher than their calibrated value of 14 mL g−1. These

wileyonlinelibrary.com/journal/ps Published 2015. This article is a U.S. Government work Pest Manag Sci (2015)
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differences in sorption coefficients are not unusual, given differ-
ences in soils among these sites.

The RZWQM simulates pesticide removal from plant residue
using two wash-off parameters.31 The same parameters (wash-off
fraction 100%, wash-off power term 0.033 mm−1) were used for
metolachlor and OXA as for atrazine, based on RZWQM simula-
tions in which atrazine losses were compared with field-measured
leaching.28 These same values have also been successfully used
with the RZWQM to simulate measured leaching and run-off
losses of metribuzin.32 The pesticide half-life on crop residue was
assumed to be less than in soil, as suggested by Wauchope et al.31

The calibrated model was used to investigate effects of nomi-
nal 0, 50 and 100% removal of corn stover. At the 50 and 100%
removal levels, the model was run under four scenarios. In the
simplest scenario, the only adjustment to model parameteriza-
tion was corn stover removal when the grain was harvested. In
the second scenario, the surface crust conductivity was reduced
by 25% for the 50% residue removal and by 50% when all the
corn stover was harvested (Table 1). Likewise, in the third scenario,
total soil macroporosity was reduced by 25% for the 50% residue
removal and by 50% when all the corn stover was harvested.
In the final scenario, both surface crust conductivity and macro-
porosity were reduced by the specified amounts with residue
removal. In order to compare the effect of these management
scenarios on herbicide losses, atrazine application rate prior to
1993 was set to zero to eliminate carryover, and the applica-
tion rate for the simulated years (1993–1995) was increased to
2.8 kg AI ha−1 to match the actual rate of metolachlor addi-
tion. Atrazine was applied to plot 13 at this rate from 1990 to
1992 (http://apps.tucson.ars.ag.gov/nashua/), and 2.8 kg AI ha−1 is
within label requirements.

3 RESULTS AND DISCUSSION
3.1 Simulated residue levels
Models employed by three US agencies using different assump-
tions all predict that Iowa will be a major supplier of corn stover
for biofuel production.2 The amount of stover that can be sus-
tainably harvested, however, is likely to be less than the nominal
100% level we simulated. Nevertheless, even at this level there was
still a considerable amount of residue retained after harvest. While
the amount of residue retained varied from year to year owing to
weather-related differences in crop growth, the average standing
and surface residue for the 3 year period (1993–1995) with 100%
removal was 1440 kg ha−1 (Table 2).

As Johnson et al.33 have conclusively demonstrated, a universal
minimum residue amount to maintain soil health and organic
carbon levels is a flawed concept. Nevertheless, they suggested
retaining 6000 kg ha−1 year−1 as a useful generic starting point
on which to base harvest recommendations, although less residue
may be required for erosion control. With this rate in mind, the
50% nominal harvest rate resulted in sufficient residue in all years,
except 1994, when limited crop growth resulted in barely enough
residue to meet the target even with no residue removal (Table 2).
At the 100% harvest level, the amount of standing and surface
biomass at harvest was well below the threshold in all three years
(Table 2).

3.2 Measured and simulated drainage volume
As pointed out by Malone et al.19 and others, a model must
first correctly simulate hydrology in order accurately to predict
pesticide transport. The measured timing of water exiting the

Table 1. Modeled scenarios and rate of surface biomass harvest, sur-
face crust conductivity and total macroporosity used in the RZWQM
simulations

Scenario

Above-ground
biomass

harvest (%)

Surface
crust

Ks (cm h−1)

Total
macroporosity

(cm3 cm−3)

Control – residue intacta 0 0.0530 0.00053
50% Biomass removalb 75 0.0530 0.00053
50% Biomass

removal – reduced
crust conductivity

75 0.0397 0.00053

50% Biomass
removal – reduced
macroporosity

75 0.0530 0.00040

50% Biomass
removal – reduced
conductivity and
macroporosity

75 0.0397 0.00040

100% Biomass removalc 97 0.0530 0.00053
100% Biomass

removal – reduced
crust conductivity

97 0.0265 0.00053

100% Biomass
removal – reduced
macroporosity

97 0.0530 0.00026

100% Biomass
removal – reduced
conductivity and
macroporosity

97 0.0265 0.00026

a All management and RZWQM input parameters of this scenario are
identical to those used for this plot in Malone et al.,28 except for
the atrazine application, which was changed to 2.8 kg AI ha−1 in
1993–1995 and eliminated in previous years.
b Nominal 50% simulated above-ground biomass removal was
achieved in RZWQM by leaving 15 cm of standing residue and apply-
ing a harvest index of 75 to the remaining surface residue. Parameters
other than those indicated were identical to those used in the control.
c Nominal 100% simulated above-ground biomass removal was
achieved in RZWQM by leaving 15 cm of standing residue and apply-
ing a harvest index of 97 to the remaining surface residue. Parameters
other than those indicated were identical to those used in the control.

subsurface drains closely corresponded to the simulated timing
with drainage starting in late March to early June, depending on
weather year (Fig. 1). Likewise, the measured amount of drainage
varied considerably, with 1993 the wettest year, having 5.5 times
more drainage than the driest year (1994). In most years, the
RZWQM slightly underpredicted the drainage volume, and for
the 6 year period average, annual, simulated drainage volume
(16.0 cm) was 19% less than the measured volume (19.7 cm). The
Nash–Sutcliffe efficiency (EF) was 0.56, indicating an acceptable
fit of the model to the measured drainage volume. According
to Moriasi et al.,34 EF values greater than 0.5 are indicative of a
satisfactory simulation of measured data.

In each of the three years (1993–1995) in which herbicide losses
were measured, simulated harvesting of the corn stover reduced
drainage volume mainly owing to increased evaporation from
the soil surface, but had little effect on surface run-off (Table 3).
Removal of surface residue at the 50% rate reduced average
subsurface drainage by 31% compared with leaving the residue
intact while increasing evaporation by 38% (Table 3). Reducing
the surface crust conductivity, the total macroporosity or both
by 25% only had a minimal effect on net water movement to

Pest Manag Sci (2015) Published 2015. This article is a U.S. Government work wileyonlinelibrary.com/journal/ps
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Table 2. Effect of residue harvest on the amount of standing and surface biomass at harvest and at the time of herbicide application

Control – no residue removed 50% Biomass removal 100% Biomass removal

Crop year
Modeled at

harvesta(kg ha−1)
Modeled at

plantingb(kg ha−1)
Modeled at

harvest (kg ha−1)
Modeled at

planting (kg ha−1)
Modeled at

harvest (kg ha−1)
Modeled at

planting (kg ha−1)

1993 16 830 12 670 7380 5360 2010 1500
1994 6410 4850 2480 1840 790 600
1995 14 720 9550 6150 3740 1510 960
Average 12 650 9020 5340 3650 1440 1020

a The data from the previous crop year were used to estimate the amount of residue on the soil surface at harvest (i.e. October 1992 for crop year
1993).
b The modeled at planting amounts represent the amount of residue on the soil surface at the time of herbicide application.

Figure 1. Weekly averaged, daily observed and RZWQM-predicted subsur-
face drainage rate from chisel-tilled plot 13 in Nashua, Iowa. The top num-
ber above each year is the measured annual flow volume, with the modeled
volume beneath.

the drains, with a maximum additional reduction in drainage
of 0.4%. Similarly, the effect on evaporation and run-off was
negligible. Likewise, removal of all residue reduced drainage by
43% compared with the control, and reducing the soil hydraulic
properties only reduced the subsurface drainage by an additional
1.8%. Thus, the first increment in residue removal had a much
greater effect on drainage volume than removing the next 50%,
while changing the hydraulic properties had a minimal effect on
drainage volume.

3.3 Measured and simulated metolachlor in drainage water
and soil
In addition to its sorption coefficient, metolachlor half-life is a
critical parameter affecting its fate in soil and water. The RZWQM
adjusts pesticide degradation on a daily basis using simulated
soil temperature and water content. Therefore, we adjusted
the soil degradation coefficient in the RZWQM at 20 ∘C and
33% soil water content to achieve an acceptable fit (r2 = 0.67)
between observed and simulated metolachlor concentrations
in the soil (Fig. 2). This resulted in a metolachlor half-life for the
entire soil profile and crop residue for May through Septem-
ber that averaged 31 days for 1993–1995. This falls within
the range of 15–70 days reported for metolachlor in Extoxnet
(http://extoxnet.orst.edu/pips/metolach.htm).

The calibrated model has been previously shown accurately
to predict atrazine concentrations in the soil and in subsurface
drainage from this plot.28 Similarly, our simulations of weekly,
flow-weighted metolachlor concentrations using identical model

parameterization and site-specific measured metolachlor Koc fol-
lowed the general pattern of measured concentrations in the
subsurface drainage water (Fig. 3). The highest measured and sim-
ulated concentrations were noted in 1993 and coincided with the
peak in drain flow. The model tended to underpredict the mea-
sured concentrations early in the growing season and overpredict
later in the year.

The measured cumulative metolachlor transport in drainage was
more closely simulated than the weekly concentration in most
years (Fig. 4). In 1993, however, simulated transport (4.03 g ha−1)
was nearly double that of measured transport (2.03 g ha−1). Most of
this discrepancy was due to a single week in late August when the
RZWQM predicted an average metolachlor concentration of 1.6 μg
L−1 in the drain flow when none was detected in the composite
sample collected that week (Fig. 3). If this sampling period is
treated as an outlier and eliminated, the simulated transport (2.11
g ha−1) closely approximates the measured value, with an EF of
0.89 in 1993 and 0.54 in 1994 and 1995. The greater measured
and simulated transport in 1993 than in 1994 and 1995 was
due to greater drainage volume in addition to the timing and
intensity of rainfall relative to the metolachlor application. Thus,
the model previously calibrated using observed flow volumes
and atrazine concentrations in tile drainage by Malone et al.28

accurately predicted the fate of metolachlor in tile drainage and
in the soil.

3.4 Effect of residue harvest on herbicides in tile flow
In all scenarios, herbicide losses in subsurface drainage were much
greater in 1993 than in 1994 and 1995 (Table 3). This coincided
with the much greater measured and simulated drainage volume
in 1993 (Fig. 1). Averaged over the 3 year period with no removal of
residue, simulated metolachlor losses were about 1.8 times greater
than losses of atrazine. Most of this difference was probably due
to atrazine having a higher calibrated Koc (244.5 mL g−1) than our
measured Koc for metolachlor (200 mL g−1), as Koc was the most
sensitive parameter according to Malone et al.28

In contrast to the two herbicides, predicted OXA losses in drain
flow were not strongly correlated with drainage volume when
the residue layer was left intact. The loss in 1995 was similar in
magnitude to that in 1993, although the measured and simu-
lated drainage volume was approximately 3 times greater in 1993
(Table 3 and Fig. 1). This suggested that in 1995 the timing and
rate of OXA formation led to it being more available for leaching
than in 1993 when drainage volumes were greater. Additionally,
OXA losses were much greater in each year than either its parent
compound, metolachlor, or atrazine (Table 3). This is congruent

wileyonlinelibrary.com/journal/ps Published 2015. This article is a U.S. Government work Pest Manag Sci (2015)
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Table 3. Effect of residue removal and reduced crust hydraulic conductivity and soil macroporosity on drainage, evaporation, surface run-off and
losses of atrazine, metolachlor and OXA in tile flow in 1993, 1994 and 1995

50% Biomass removal 100% Biomass removal

Year

Control
Residue

intact
Residue

removal only
Reduced crust
conductivity

Reduced
macroporosity

Reduced
conductivity

and macroporosity

Residue
removal

only
Reduced crust
conductivity

Reduced
macroporosity

Reduced
conductivity and

macroporosity

Drainage (cm)
1993 36.9 29.3 29.2 29.3 29.3 24.6 24.6 24.6 24.6
1994 2.6 1.4 1.3 1.3 1.4 1.2 0.8 1.2 0.6
1995 10.1 3.3 3.3 3.3 3.2 2.3 2.2 2.2 2.1
Total 49.6 34.0 33.9 33.9 33.8 28.1 27.6 28.0 27.2

Evaporation (cm)
1993 25.0 37.7 37.6 37.6 37.7 46.2 46.0 46.2 45.8
1994 28.5 34.0 33.8 33.8 34.0 34.7 34.7 34.9 34.6
1995 19.7 29.5 29.6 29.5 29.6 33.1 33.1 33.1 33.0
Total 73.3 101.2 101.0 101.0 101.3 114.0 113.8 114.2 113.4

Run-off (cm)
1993 8.0 6.9 7.1 7.0 7.0 6.7 6.8 6.8 6.8
1994 3.0 3.2 3.3 3.3 3.5 3.1 4.0 3.3 5.0
1995 3.9 3.9 3.8 3.9 4.0 3.9 3.9 4.2 4.3
Total 14.9 14.0 14.2 14.1 14.4 13.8 14.7 14.3 16.1

Atrazine (g ha−1)
1993 1.65 0.83 2.36 1.86 9.28 0.64 4.59 6.70 36.46
1994 0.09 0.01 0.08 0.08 0.46 0.01 0.14 0.35 0.85
1995 0.80 0.08 0.27 0.29 0.99 0.04 0.39 0.56 2.21
Total 2.54 0.93 2.71 2.23 10.73 0.69 5.12 7.61 39.52

Metolachlor (g ha−1)
1993 4.03 1.47 7.35 5.55 23.53 0.86 12.43 11.73 34.94
1994 0.19 0.02 0.15 0.12 0.61 0.01 0.20 0.28 0.39
1995 0.33 0.02 0.11 0.10 0.38 0.01 0.14 0.14 0.35
Total 4.55 1.51 7.61 5.77 24.52 0.88 12.77 12.15 35.67

OXA (g ha−1)
1993 58.1 30.4 39.0 32.6 43.5 16.7 28.4 22.0 35.2
1994 7.4 2.4 3.0 2.7 4.3 1.3 1.8 2.3 1.9
1995 42.4 7.5 9.0 8.3 10.0 3.6 4.9 4.9 6.5
Total 108.0 40.3 51.0 43.6 57.8 21.6 35.1 29.2 43.6

Figure 2. Observed and RZWQM-predicted metolachlor in the soil profile
in chisel-tilled plot 13 in Nashua, Iowa. Arrows denote the date of herbicide
application.

with the observations of Kolpin et al.18 that metolachlor metabo-
lites are more frequently detected in groundwater in Iowa than the
parent compound.

Unlike the two surface-applied herbicides, which are immedi-
ately available for transport, OXA must first be formed as a result

Figure 3. Weekly averaged observed and RZWQM-predicted metolachlor
concentration in subsurface drainage from chisel-tilled plot 13 in Nashua,
Iowa.

of metolachlor degradation. In 1993, the year with greatest trans-
port (Table 3), the RZWQM indicated that the OXA concentration
in soil peaked around 6 July (Fig. 5), about 50 days after meto-
lachlor application. This is similar to the 56 days it took for OXA
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Figure 4. Cumulative metolachlor transport in subsurface drainage from
chisel-tilled plot 13 in Nashua, Iowa. The top number above each year is
the measured annual transport, with the modeled amount beneath.
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Figure 5. Simulated daily distribution of OXA on the surface mulch, surface
1 cm of soil, in the soil profile and in tile drainage in Nashua, Iowa,
chisel-tilled plot 13 as a function of residue removal rate from 17 May 1993
to 1 October 1993.

concentrations to peak in soil incubation studies,35 suggesting that
our model reasonably simulated OXA formation and degradation.

Removal of the residue at the 50% level, with no change in
soil hydraulic properties, resulted in a 63–67% decrease in aver-
age atrazine, metolachlor and OXA losses in subsurface drainage
compared with leaving the residue intact while drainage volume
was only reduced 31% (Table 3). Likewise, predicted losses of
these compounds were further decreased when surface biomass
removal was increased to 100%. As was observed with drainage
volume, removal of the first 50% of stover had a much greater

effect than removal of the remaining residue. The observation
that predicted reductions in chemical transport were much greater
than predicted reductions in drainage volume suggested that
residue removal increased sorption because of greater direct con-
tact with the soil, resulting in reduced transport into macropores.

A closer examination of the distribution of metolachlor on the
soil and residue with time and losses in tile flow supports this con-
tention (Fig. 6). Data for 1993, when most metolachlor transport
to drainage occurred, indicated that immediately after herbicide
application on 17 May there was more metolachlor on the residue
when no harvest took place and progressively less with 50% and
100% residue removal. Conversely, the amount on the surface
1 cm of soil was greatest with 100% residue removal and least
with no removal. This immediate contact with the soil enhanced
metolachlor sorption and reduced availability for transport. Con-
sequently, the first rainfall after herbicide application on 21 May
resulted in 5.0 μg cm−2 of metolachlor transport in macropores
when the residue was intact, but only 2.1 μg cm−2 with 100%
residue removal.

Generally speaking, metolachlor was rapidly removed from the
residue for all harvest levels, but concentrations in the upper
1 cm of soil remained consistently higher with residue removal.
At the time when major rainfall-induced movement of water to
the drain occurred (e.g. 11 July and 16 August 1993), metolachlor
concentrations at depth in the profile were slightly greater with
no residue removal than when residue was harvested (Fig. 7). In
addition, the water table was higher when the residue was left
intact on account of reduced evaporation (Fig. 6). When the water
table reached this zone, metolachlor was available to be mobilized
and transmitted to the drain.28 These factors contributed to more
metolachlor transport to the drains when no residue was removed.

3.5 Combined effect of residue harvest and changes in soil
hydraulic properties on herbicides in tile flow
It is unlikely, however, that residue removal would not affect
soil hydraulic properties. For example, Blanco-Canqui et al.7 noted
that 1 year after removing 100% of the corn stover there was
a 7–31-fold reduction in soil saturated hydraulic conductivity at
0–20 cm depth that was dependent on soil type. In a follow-up
study 2.5 years after beginning stover removal, they noted that,
when more than 50% was removed, initial water infiltration was
reduced 2–4-fold for silt loam soils, but not significantly changed
for a clay loam soil.36 They attributed this loss of hydraulic function
to sealing and crusting of the soil surface, caused by reduced
protection from raindrop impact and fewer earthworm-formed
macropores. Additional weight and frequency of traffic related
to mechanically harvesting the stover can further contribute to
increased soil compaction and decreased infiltration,37 which was
not a factor in the plots of Blanco-Canqui and Lal36 where corn
stover was removed by hand. Thus, while the 25% reductions in
surface crust conductivity and soil macroporosity we selected at
the 50% stover removal rate and the 50% reductions at 100%
stover harvest rate were somewhat arbitrary, these reductions
are reasonable and likely to be conservative based on available
literature.

Separately, the 25% reduction in surface crust conductivity and
soil macroporosity at the 50% residue removal rate increased
losses of the three compounds in drainage by a similar amount
(Table 3). For example, total atrazine loss increased from 0.93 to
2.71 g ha−1 when crust conductivity was reduced, and to 2.23
g ha−1 when macroporosity was reduced. Predicted losses of
atrazine and metolachlor under these scenarios were similar to
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Figure 6. Simulated daily distribution of metolachlor on the surface mulch,
surface 1 cm of soil, in the soil profile and in tile drainage and the depth of
the water table in Nashua, Iowa, chisel-tilled plot 13 as a function of residue
removal rate from 17 May 1993 (date of application) to 1 October 1993.

predicted losses when no residue was removed (2.54 g ha−1).
Predicted losses of OXA, however, were only about one-half of
those predicted with no residue removal. When the 100% residue
removal scenario was invoked along with separate 50% reduc-
tions in surface crust conductivity and soil macroporosity, aver-
age losses of atrazine and metolachlor were greater than those
predicted with no residue removal. In contrast, predicted OXA
losses were less than those with either no residue removal or 50%
removal. Thus, while reducing surface crust conductivity and soil
macroporosity increased losses of herbicides compared with no
residue removal, it had the opposite effect on losses of the degra-
dation product.

In the last scenario, when surface crust conductivity and soil
macroporosity were simultaneously reduced, predicted losses of
both herbicides increased substantially compared with when each
parameter was adjusted separately (Table 3). At the 50% residue

removal rate, atrazine losses were fourfold greater and metolachlor
losses were increased fivefold compared with their losses when
the residue was not removed. Similarly the 100% residue removal
rate further increased losses of these herbicides. Losses of OXA,
however, were only slightly increased compared with scenarios
where surface crust conductivity and soil macroporosity were
reduced separately. In addition, the maximum predicted loss of
OXA was less than half the loss when the residue was not removed.
Thus, removing the residue and changing the hydraulic properties
to reflect an increase in soil surface crusting and a decrease
in soil macroporosity greatly increased losses of atrazine and
metolachlor while decreasing total tile flow.

Most of the increased parent compound losses with reduced
hydraulic properties were due to diminished ability of macropore
linings to sorb these compounds as the amount of water, atrazine
and metolachlor transmitted by individual macropores increased.
When surface crust conductivity is reduced, the RZWQM simulates
less infiltration into the soil matrix and more water and herbicide
transport into macropores.

In our simulations when residue was removed, the number of
active macropores (Nmac) decreased and less of the soil matrix was
available to contribute to herbicide sorption, resulting in increased
transport through macropores. As discussed by Malone et al.,20,28

more herbicide can leach with a smaller Nmac because water and
chemicals transported into macropores are distributed between
fewer macropores than with a larger Nmac. Therefore, less soil was
available for chemical partitioning per mass of chemical for the
residue removal plots when Nmac was reduced.

Experimentally, Stehouwer et al.38 demonstrated that, even with
rapid, non-equilibrium flow, macropore linings were able to sorb
46–93% of the introduced atrazine and metolachlor, with higher
sorption percentages noted for earthworm burrows than for artifi-
cial macropores of similar diameter. When Edwards et al.39 sequen-
tially added aliquots of water containing atrazine to artificial
macropores, however, they noted that the atrazine concentra-
tion in water exiting macropores progressively increased, which
they attributed to partial saturation of sorption sites. Likewise,
Farenhorst et al.40 attributed increased transport of atrazine and
metolachlor in earthworm burrows with time to rapid saturation
of sorption sites on the burrow wall.

Reduced OXA transport with residue removal and no changes in
soil properties was attributable to the same phenomena as those
observed with metolachlor. That is, less transport into macropores
in 1993 shortly after application and less OXA at or deeper than
the water table during the July and August tile flow. Decreased
formation shortly after application owing to slower metolachlor
breakdown in soil compared with mulch was probably also a
contributing factor. For example, on 23 May 1993, 0.41 kg OXA ha−1

was available with no residue removal compared with 0.21 kg ha−1

in 100% removal (Fig. 5). These factors contributed to more OXA
being available in the vicinity of the water table when leaching
occurred (Fig. 7). Just before the major rainfall-induced leaching
event on 11 July 1993, the total amount of OXA below 40 cm in the
soil profile was 0.092 kg ha−1 with no residue removal, whereas less
than half the amount (i.e. 0.035 kg ha−1) was present when 100%
of the residue was removed (Fig. 7).

In the case of OXA, reduced losses in tile flow with residue
removal and changed hydraulic properties were primarily the
result of its lower Koc (57 mL g−1) compared with metolachlor (200
mL g−1). If we hypothetically increased its Koc in the simulations to
200 mL g−1, OXA loss in drainage for the 3 year period was 16.1
g ha−1 with 100% residue removal and reduced conductivity and
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Figure 7. Simulated depth distribution of metolachlor and OXA in the soil profile in Nashua, Iowa, chisel-tilled plot 13 on 11 July and 16 August 1993 as a
function of residue removal rate. The insets zoom on the concentrations from 40 to 100 cm.

macroporosity, as opposed to 6.8 g ha−1 with no residue removal
and the original soil hydraulic properties. Likewise, in 1993 with the
increased Koc, OXA transport (12.5 g ha−1) was much greater with
100% residue removal and changed soil hydraulic properties than
with no residue removal and the original hydraulic properties (2.3
g ha−1).

4 SUMMARY AND CONCLUSIONS
The RZWQM results matched the measured tile flow and herbicide
transport fairly accurately. In addition, simulated formation of OXA
was similar to values reported in the literature. These observations
suggest that the model can be used with confidence to predict the
effect of residue removal on herbicide and metabolite transport.
In all scenarios, residue removal reduced the volume of tile flow,
with the first 50% increment in residue removal having a larger rel-
ative effect than removing the remaining 50%. It is unlikely, how-
ever, that 100% residue removal will become a standard practice,
given the known negative effects on soil organic matter content
and increased risk of surface run-off and soil erosion. On the other
hand, partial removal of corn stover can increase crop yields in
regions with cool, temperate climates and poorly drained soils.36 It
is also unlikely that residue removal would not concurrently alter
the soil hydrological properties. Thus, the most likely scenario of
those we simulated is 50% residue removal with reduced crust con-
ductivity and reduced soil macroporosity. Under this scenario, the
model predicts that residue harvest will result in sufficient remain-
ing residue to maintain soil health in most years (i.e. >6000 kg
ha−1), but will substantially (4–5-fold) increase losses of atrazine
and metolachlor in tile drainage with only modest (25%) reduc-
tions in crust conductivity and soil macroporosity. Increased loss
of these materials was attributable to their reduced sorption due
to more total flow moving through fewer macropores. Even under

this scenario, the maximum estimated amount of herbicide trans-
mitted to tile drains on an annual basis (0.9% of the applied meto-
lachlor in 1993) was well within the norms of field observations.
In their comprehensive review, Kladivko et al.41 noted that mass
losses of pesticides in tile drainage are generally less than 1%, but
can be a high as 3%.

In contrast to herbicide losses, the model under all scenarios
predicted that residue harvest will reduce the loss of the meto-
lachlor degradation product OXA. As this degradate is formed
after herbicide application, more rapid movement of the parent
compound into the soil matrix by intervening rainfalls, which is a
consequence of residue harvest, should make the degradate posi-
tionally less available to be transported by macropore flow to tile
drains. Regardless, OXA losses to tile flow were greater than losses
of metolachlor as a percentage of the amount of the parent com-
pound applied, which is consistent with the observations of Kolpin
et al.18 with regard to the relative proportions of metolachlor and
its degradates detected in Iowa groundwater.

Field studies are necessary to confirm model simulations. One of
the primary values of numerical models is to illuminate aspects of
a system that are most in need of further study.42 Nevertheless, our
simulations indicated that corn stover harvest, even with only 50%
removal, can negatively impact drainage water quality.
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