52 research outputs found

    Shifts in the source and composition of dissolved organic matter in southwest Greenland lakes along a regional hydro-climatic gradient

    Get PDF
    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by ~2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term “pulse-process”: Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end‐point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced

    Stability of the Wurtzite Structure

    Get PDF
    An analysis of available data for 20 wurtzite compounds of the ANB8-N type shows that the stability as compared with zinc blende is closely connected with deviations of the c / a ratio from the ideal value of 1.633. A simple qualitative model is proposed to account for this feature. The variation in c / a is then correlated with the charge parameter ZC / ℏωp, where Z is the (effective) valence, C Phillips's electronegativity difference, and ℏωp the plasma energy of the free-valence-electron gas. The results indicate that c / a may be predicted with an uncertainty of 0.1%

    Selective incorporation of dissolved organic matter (DOM) during sea ice formation

    Get PDF
    This study investigated the incorporation of DOM from seawater into >2 day-old sea ice in tanks filled with seawater alone or amended with DOM extracted from the microalga, Chlorella vulgaris. Optical properties, including chromophoric DOM (CDOM) absorption and fluorescence, as well as concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), dissolved carbohydrates (dCHOs) and dissolved uronic acids (dUAs) were measured. Enrichment factors (EFs), calculated from salinity-normalized concentrations of DOM in bulk ice, brine and frost flowers relative to under-ice water, were generally >1. The enrichment factors varied for different DOM fractions: EFs were the lowest for humic-like DOM (1.0–1.39) and highest for amino acid-like DOM (1.10–3.94). Enrichment was generally highest in frost flowers with there being less enrichment in bulk ice and brine. Size exclusion chromatography indicated that there was a shift towards smaller molecules in the molecular size distribution of DOM in the samples collected from newly formed ice compared to seawater. Spectral slope coefficients did not reveal any consistent differences between seawater and ice samples. We conclude that DOM is incorporated to sea ice relatively more than inorganic solutes during initial formation of sea ice and the degree of the enrichment depends on the chemical composition of DO

    Lawaetz, Martin

    No full text
    corecore