3,963 research outputs found

    Les origines parallèles du phénotype bleu chez le doré jaune (Sander vitreus)

    Full text link
    Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

    Chemo-dynamical properties of the Anticenter Stream::a surviving disc fossil from a past satellite interaction

    Get PDF
    Using Gaia DR2, we trace the Anticenter Stream (ACS) in various stellar populations across the sky and find that it is kinematically and spatially decoupled from the Monoceros Ring. Using stars from {\sc lamost} and {\sc segue}, we show that the ACS is systematically more metal-poor than Monoceros by 0.10.1 dex with indications of a narrower metallicity spread. Furthermore, the ACS is predominantly populated of old stars (10Gyr\sim 10\,\rm{Gyr}), whereas Monoceros has a pronounced tail of younger stars (610Gyr6-10\, \rm{Gyr}) as revealed by their cumulative age distributions. Put togehter, all of this evidence support predictions from simulations of the interaction of the Sagittarius dwarf with the Milky Way, which argue that the Anticenter Stream (ACS) is the remains of a tidal tail of the Galaxy excited during Sgr's first pericentric passage after it crossed the virial radius, whereas Monoceros consists of the composite stellar populations excited during the more extended phases of the interaction. We suggest that the ACS can be used to constrain the Galactic potential, particularly its flattening, setting strong limits on the existence of a dark disc. Importantly, the ACS can be viewed as a stand-alone fossil of the chemical enrichment history of the Galactic disc.Comment: 6 pages, 6 Figure, submitted to MNRAS, comments welcom

    Toward privacy-aware federated analytics of cohorts for smart mobility

    Get PDF
    Location-based Behavioral Analytics (LBA) holds a great potential for improving the services available in smart cities. Naively implemented, such an approach would track the movements of every citizen and share their location traces with the various smart service providers—similar to today's Web analytics systems that track visitors across the web sites they visit. This study presents a novel privacy-aware approach to location-based federated analytics that removes the need for individuals to share their location traces with a central server. The general approach is to model the behavior of cohorts instead of modeling specific users. Using a federated approach, location data is processed locally on user devices and only shared in anonymized fashion with a server. The server aggregates the data using Secure Multiparty Computation (SMPC) into service-defined cohorts, whose data is then used to provide cohort analytics (e.g., demographics) for the various smart service providers. The approach was evaluated on three real-life datasets with varying dropout rates, i.e., clients not being able to participate in the SMPC rounds. The results show that our approach can privately estimate various cohort demographics (e.g., percentages of male and female visitors) with an error between 0 and 8 percentage points relative to the actual cohort percentages. Furthermore, we experimented with predictive models for estimating these cohort percentages 1-week ahead. Across all three datasets, the best-performing predictive model achieved a Pearson's correlation coefficient above 0.8 (strong correlation), and a Mean Absolute Error (MAE) between 0 and 10 (0 is the minimum and 100 is the maximum). We conclude that privacy-aware LBA can be achieved using existing mobile technologies and federated analytics

    Transgenerational plasticity of dispersal‐related traits in a ciliate: genotype‐dependency and fitness consequences

    Get PDF
    Phenotypic plasticity, the ability of one genotype to produce different phenotypes in different environments, plays a central role in species' response to environmental changes. Transgenerational plasticity (TGP) allows the transmission of this environmentally-induced phenotypic variation across generations, and can influence adaptation. To date, the genetic control of TGP, its long-term stability, and its potential costs remain largely unknown, mostly because empirical demonstrations of TGP across many generations in several genetic backgrounds are scarce. Here, we examined how genotype determines the TGP of phenotypic traits related to dispersal, a fundamental process in ecology and evolution. We used an experimental approach in Tetrahymena thermophila, a ciliate model-species, to determine if and how phenotypic changes expressed following a dispersal treatment are inherited over multiple generations. Our results show that morphological and movement traits associated with dispersal are plastic, and that these modifications are inherited over at least 35 generations. The fitness costs and benefits associated with these plastic changes are also transmitted to further generations. We highlight that the genotype modulates the expression and reversibility of transgenerational plasticity of dispersal-related traits and its fitness outcomes. Our study thus suggests that genotype-dependent TGP could play an important role in eco-evolutionary dynamics as dispersal determines gene flow and the long-term persistence of natural populations

    RAD-QTL mapping reveals both genome-level parallelism and different genetic architecture underlying the evolution of body shape in Lake Whitefish (Coregonus clupeaformis) species pairs

    Get PDF
    Parallel changes in body shape may evolve in response to similar environmental conditions, but whether such parallel phenotypic changes share a common genetic basis is still debated. The goal of this study was to assess whether parallel phenotypic changes could be explained by genetic parallelism, multiple genetic routes, or both. We first provide evidence for parallelism in fish shape by using geometric morphometrics among 300 fish representing five species pairs of Lake Whitefish. Using a genetic map comprising 3438 restriction site-associated DNA sequencing single-nucleotide polymorphisms, we then identified quantitative trait loci underlying body shape traits in a backcross family reared in the laboratory. A total of 138 body shape quantitative trait loci were identified in this cross, thus revealing a highly polygenic architecture of body shape in Lake Whitefish. Third, we tested for evidence of genetic parallelism among independent wild populations using both a single-locus method (outlier analysis) and a polygenic approach (analysis of covariation among markers). The single-locus approach provided limited evidence for genetic parallelism. However, the polygenic analysis revealed genetic parallelism for three of the five lakes, which differed from the two other lakes. These results provide evidence for both genetic parallelism and multiple genetic routes underlying parallel phenotypic evolution in fish shape among populations occupying similar ecological niches.Keywords : Adaptive radiation, Parallel evolution, Fish body shape, Geometric morphometrics, Genotyping-by-sequencing

    Pulmonary embolism and 3-month outcomes in 4036 patients with venous thromboembolism and chronic obstructive pulmonary disease: data from the RIETE registry.

    No full text
    International audienceBACKGROUND: Patients with chronic obstructive pulmonary disease (COPD) have a modified clinical presentation of venous thromboembolism (VTE) but also a worse prognosis than non-COPD patients with VTE. As it may induce therapeutic modifications, we evaluated the influence of the initial VTE presentation on the 3-month outcomes in COPD patients. METHODS: COPD patients included in the on-going world-wide RIETE Registry were studied. The rate of pulmonary embolism (PE), major bleeding and death during the first 3 months in COPD patients were compared according to their initial clinical presentation (acute PE or deep vein thrombosis (DVT)). RESULTS: Of the 4036 COPD patients included, 2452 (61%; 95% CI: 59.2-62.3) initially presented with PE. PE as the first VTE recurrence occurred in 116 patients, major bleeding in 101 patients and mortality in 443 patients (Fatal PE: first cause of death). Multivariate analysis confirmed that presenting with PE was associated with higher risk of VTE recurrence as PE (OR, 2.04; 95% CI: 1.11-3.72) and higher risk of fatal PE (OR, 7.77; 95% CI: 2.92-15.7). CONCLUSIONS: COPD patients presenting with PE have an increased risk for PE recurrences and fatal PE compared with those presenting with DVT alone. More efficient therapy is needed in this subtype of patients

    The role of ecotype‐environment interactions in intraspecific trophic niche partitioning subsequent to stocking

    Get PDF
    Worldwide, stocking of fish represents a valuable tool for conservation and maintenance of species exploited by recreational fishing. Releases of hatchery-reared fish are more and more recognized to have numerous demographic, ecological, and genetic impacts on wild populations. However, consequences on intraspecific trophic relationships have rarely been investigated. In this study, we assessed the impacts of supplementation stocking and resulting introgressive hybridization on the trophic niches occupied by stocked, local, and hybrid lake trout (Salvelinus namaycush) within populations of piscivorous and planktivorous ecotypes stocked from a wild piscivorous source population. We compared trophic niches using stable isotope analysis (δ13C and δ15N) and trophic position among the three genetic origins. Putative genetic effects were tested with phenotype–genotype association of “life history” ecological traits (body size, growth rate, condition index, and trophic niche) and genotypes (RADseq SNP markers) using redundant discriminant analysis (RDA). Results showed that sympatry resulting from the stocking of contrasting ecotypes is a risk factor for niche partitioning. Planktivorous populations are more susceptible to niche partitioning, by competitive exclusion of the local fish from a littoral niche to an alternative pelagic/profundal niche. Observed niche partitioning is probably a manifestation of competitive interactions between ecotypes. Our results emphasize that ecotypic variation should be considered for more efficient management and conservation practices and in order to mitigate negative impact of supplementation stocking

    Cage transplant experiment shows weak transport effect on relative abundance of fish community composition as revealed by eDNA metabarcoding

    Get PDF
    Protection of freshwater fish diversity is a global conservation priority in face of its alarming decline in the last decades. A crucial step to protect freshwater fish diversity is the production of prompt and precise evaluation of community composition and spatial distribution. Metabarcoding of environmental DNA (eDNA metabarcoding) generally surpasses traditional methods for documenting diversity and community composition in aquatic environments. Nevertheless, empirical evidence evaluating how eDNA transportation in water affect community composition and structure via eDNA metabarcoding data remains scarce. Using a brown trout (Salmo trutta) cage transplant experiment in the St. Lawrence River (Canada), a large fluvial system, we tested the detection and relative abundance of species’ eDNA along 15 sampling locations. We detected brown trout eDNA in five localities up to 5,000 m from the cage, but only one sampling location situated 10 m downstream and in the direct line of the cage was affected at the community composition level. This locality showed a relative abundance of brown trout eDNA of 13.1%, while the four others showed a relative abundance under 1.0%. K-means cluster analysis confirmed the impact of brown trout eDNA on community composition by separating this locality from all others. Based on species loading of a redundancy analysis, we showed that this different k-means group was associated with the high relative abundance of brown trout. No evidence of transport effect of brown trout eDNA on fish community composition was observed in any other sampling locations. Together, our results support the view that eDNA metabarcoding can be both a conveyor belt of biodiversity information and a precise tool to study the composition and structure of fish communities in river

    Recalibrating immunity in cancer and autoimmune inflammation by lectin-driven regulatory circuits

    Get PDF
    Endogenous lectins play key roles in cell homeostasis by decoding the informationencrypted in glycans present on the cell surface or extracellular matrix. Galectins, a familyof soluble lectins, have emerged as central regulators of innate and adaptive immuneresponses. In this article we review seminal work demonstrating the immunoregulatoryroles of Galectin-1 (Gal-1), a proto-type member of the galectin family, and highlightcentral mechanisms that control its functions in cancer and autoimmune inflammation.Understanding the cellular pathways that control Gal-1 expression and function in tumorand inflammatory microenvironments will set the bases for the design of rational therapiesbased on positive or negative modulation of this endogenous lectin in cancer andautoimmune diseases.Fil: Bach, Camila Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Cutine, Anabela María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Laporte, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mahmoud, Yamil Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Manselle Cocco, Montana Nicolle. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Massaro, Mora. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Merlo, Joaquín Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Perrotta, Ramiro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Sarbia, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Veigas, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin
    corecore