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Toward privacy-aware federated
analytics of cohorts for smart
mobility

Martin Gjoreski*, Matías Laporte and Marc Langheinrich

Faculty of Informatics, Università della Svizzera italiana (USI), Lugano, Switzerland

Location-based Behavioral Analytics (LBA) holds a great potential for improving

the services available in smart cities. Naively implemented, such an approach

would track themovements of every citizen and share their location traceswith

the various smart service providers—similar to today’s Web analytics systems

that track visitors across the web sites they visit. This study presents a novel

privacy-aware approach to location-based federated analytics that removes

the need for individuals to share their location traces with a central server.

The general approach is to model the behavior of cohorts instead of modeling

specific users. Using a federated approach, location data is processed locally

on user devices and only shared in anonymized fashion with a server. The

server aggregates the data using Secure Multiparty Computation (SMPC) into

service-defined cohorts, whose data is then used to provide cohort analytics

(e.g., demographics) for the various smart service providers. The approach

was evaluated on three real-life datasets with varying dropout rates, i.e.,

clients not being able to participate in the SMPC rounds. The results show

that our approach can privately estimate various cohort demographics (e.g.,

percentages of male and female visitors) with an error between 0 and 8

percentage points relative to the actual cohort percentages. Furthermore, we

experimented with predictive models for estimating these cohort percentages

1-week ahead. Across all three datasets, the best-performing predictive model

achieved a Pearson’s correlation coe�cient above 0.8 (strong correlation), and

a Mean Absolute Error (MAE) between 0 and 10 (0 is the minimum and 100 is

the maximum). We conclude that privacy-aware LBA can be achieved using

existing mobile technologies and federated analytics.

KEYWORDS

federated analytics, privacy, location-based services, mobility modeling, mobile

computing

Introduction

Motivation

Location-based Behavioral Analytics (LBA) is widely recognized as being key to

providing new services and solutions in many application domains. For example,

changes in behavior can be used to recognize impending mental health episodes

(Mehrotra et al., 2016), deliver more effective advertising and retail experiences (Krüger

et al., 2011), enhance security (Crossler et al., 2013) and shape the provision of urban
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services (Mazhar et al., 2016). Within the purely digital domain

of the Web, “behavioral analytics” are enabled through the use

of cookies that provide the mechanism for tracking individual

user interactions. Such user-centric analytics have helped drive

forward rapid innovation in the design and deployment of web

content—enabling site owners to understand visitor behavior.

Google Analytics and similar platforms have also been extended

to support mobile analytics that provide data on how users

interact with iOS and Android Apps (e.g., install, launch

and deletion events). However, while there are numerous

application-specific initiatives to measure elements of human

behavior (typically using mobile phones ), we still do not

have viable mechanisms for service providers to track user

interactions in the real world without raising significant privacy

concerns (Benjamin and Musolesi, 2020).

LBA through user-specific mobility modeling has been

studied for a long time. In the past, the focus has been on

analyzing frequent mobility patterns using Markov models

(Ashbrook and Starner, 2003). Besides the Markov-based

approaches, machine learning (ML) approaches have been

utilized to predict future movements. The initial ML approaches

were based on statistical time- and frequency-based features,

extracted from the mobility trajectories (Baumann et al., 2013).

The ML algorithms include Decision Trees (Monreale et al.,

2009), Support Vector Machines (Bhaskar and La Porta, 2015),

Random Forest (Do and Gatica-Perez, 2014), etc. The most

recent approaches for mobility modeling replaced the Markov-

and feature-based approaches with end-to-end deep learning

based on Recurrent Neural Networks (RNNs). For example,

DeepMove (Jie et al., 2018), RNN+SAtl (Jun et al., 2019) and

Flashback (Dingqi et al., 2020), are deep learning architectures

that learn time and location embeddings and apply Recurrent

Neural Networks (RNNs) for predicting the next place visited by

a user.

A disadvantage of all these methods is the requirement of

centralized data i.e., the training data must be available at one

place, rendering all these methods questionable with regards

to user privacy. After all, the EU General Data Protection

Regulation (GDPR) has emphasized the importance of location

and movements data by including it in the definition of personal

data1. One possible solution for the privacy-problem is to use

federated ML approaches, where the users’ privacy is guaranteed

by implementing one simple rule: “No personal data leaves the

user’s device.” In these approaches, each user device acts as a

separate computational unit, processing only its local data (e.g.,

local GPS traces), and sharing globally only the results of the

computation—which in federated ML approaches are abstract

model updates. An example for such approach is PMF (Jie et al.,

2020)—another RNN-based next-place predictor trained using

Federated Learning (Andrew et al., 2018). However, a downside

of PMF is its requirement of having access to large training

1 https://eur-lex.europa.eu/eli/reg/2016/679/oj

datasets and the need for specialized hardware (e.g., GPUs)—just

as its centralized cousins DeepMove and RNN+SAtl.

Proposed approach and contributions

Cohort-based modeling, instead of user-specific modeling,

is an alternative way of modeling human behavior. By modeling

the behavior of cohorts, the user is removed from the focus of

the processing pipelines. The personal data from one user is

just one data point which is anonymously aggregated within

the pool of cohort data, thus location k-anonymity (Sweeney,

2002) is enabled by default (k is the size of the cohort), enabling

privacy-aware analytics. Cohort-based mobility modeling has

been previously proposed in another context. Jane et al. (2016)

analyzed residential trajectories of older men and women

born between 1918 and 1947 with regards to socio-historical

contexts. In the context of human mobility, such group-based

approaches have been proposed to model the distribution of

human trajectories between larger areas (e.g., city blocks, cities,

countries, and continents). An example of such models is

the Exploration and Preferential Return (EPR) model. EPR is

a statistical model that does not learn from actual mobility

trajectories, but it rather uses equations that depend on

parameters such as: waiting time, action selection, exploration

phase and return phase. While these statistical models are

powerful and widely used for urban mobility planning on

a larger scale, their applicability on a smaller scale (e.g.,

understanding visitors to a specific restaurant or a specific place

in town where a smart display has been placed) is limited.

The contribution presented in this study is a novel method

for privacy-aware federated analytics of cohorts for smart

mobility. The three main characteristics that distinguish our

method are: (i) cohort-based modeling instead of user-specific

modeling; federated approach, i.e., the privacy-sensitive data

stays on the device; and (iii) online learning i.e., the models

are continuously refined through time. Other characteristics that

define our method: it works both for small datasets (e.g., 80

users) and large datasets (e.g., 65k users); it works both for

continuous GPS sensing and on-demand sensing; It does not

require specialized hardware (e.g., GPUs); and, it is based on an

online-learning approach, where updates are communicated to

the system daily. Finally, to the best of our knowledge, this is the

first method that provides privacy-aware cohort-based analytics

based on mobility data.

The rest of this paper is structured as follows: Section

Related work summarizes the existing work in related scientific

fields. Section Datasets presents the three experimental datasets

used in this study. Section Methods describes the proposed

method. Section Experiments presents the experimental setup,

the experimental results and example federated analytics of

cohorts generated by the proposed method. Section Limitations

and future work presents limitations and future improvements.
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Section Implications presents the implications this study brings.

Finally, Section Conclusion concludes the paper.

Related work

This section first presents a more general overview of the

related work on LBA, then focuses on three more specific

fields which deal with predictive models for human mobility

based on GPS and/or cell data, and the final sub-section

presents a summary comparison of the related work methods.

The field of next-place prediction offers the most advanced

approaches; however, these approaches are focused on modeling

the movement of each specific user, are mostly centralized,

require specialized hardware for the design and the training

of the models (e.g., GPUs) and are quite complex. All these

characteristics limit the utility of the next-place predictors for

real-life applications. The Federated Learning field solves the

problem of data centralization, but the method complexity and

the requirement for specialized hardware is still a challenge. The

third field deals with the task of counting visitors in a specific

place. These approaches are much simpler than the next-pace

predictors, e.g., some of them are only based on correlation

analysis, and all of them are based on centralized data analytics.

Modeling human behavior for analytics

The ubiquity of mobile phones has significantly changed

our understanding of human mobility—and consequently our

use of this knowledge in the form of mobility models. Due

to the density of today’s communication infrastructure (dense

urban areas may have cell towers every 200m), mobile phone

operators are able to track a subscriber’s path through a city

with block-level accuracy. Self-tracked systems that use GPS

(e.g., Google Maps) may allow service providers even more fine-

grained tracking capabilities. Mobility models allow providers

to characterize these traces, e.g., for predicting future activities

of individuals to optimize network handovers, or to simulate

large-scale network load. Hess et al. (2015) define a mobility

model as “a simplified representation of the movement of single

or groups of mobile entities in a given context, primarily the

spatial environment” (Hess et al., 2015). While mobility models

can be entirely synthetic—with start and end points, as well

as waypoints, speed, and pauses chosen at random or within a

defined set of parameters—a more realistic approach is to base

them on actual mobility traces (trace-based models). Several

anonymous large-scale traces are available for research, such as

the GeoLife dataset (Yu et al., 2010). Data-driven models more

accurately reflect actual human behavior, as well as real-world

topographies (e.g., streets, bus lines).

A plethora of data-driven mobility models have been

suggested. The key differentiation between them lies in the

set of features they use and the type of predictions they are

designed to make. In the context of this study, which targets

methods that can model users in the spatiotemporal domain,

a range of models from the literature offer themselves as

starting points, e.g., HERMAS (Yiwei et al., 2021), which enables

trajectory similarity measurement and user profiling using

cellular signaling data; CallSense (Zhihan et al., 2021), which

enables a recovery of sparse cellular data for modeling human

mobility; a study by Tongqing et al. (2021), which used photo

crowdsensing to model human mobility. Furthermore, human

mobility modeling often includes modeling transportation

modes (e.g., in car, in bus) (Gjoreski et al., 2020).

Note that all these models are based on offline learning,

i.e., they ingest a fixed (large) set of mobility traces and use

this to train the respective model. In this study, we focus on

alternatives to central data collection and instead investigate

approaches that support online learning, i.e., incrementally

refining mobility models.

Next-place prediction

Next-place prediction is a research field with the goal of

predicting where a user will go next, focusing on modeling

movements of individual users. A detailed review this field is

presented in the survey papers by Schreckenberge et al. (2018)

and Massimiliano et al. (2020), with the latter focusing explicitly

on deep learning methods.

A sub-task in next-place prediction is the automatic

identification of the places (or POIs), especially in datasets

collected via continuous GPS sensing. A typical approach to

identify places from continuous streams of GPS data is to use

clustering methods. The identified clusters are then related to

specific places where the users spent a certain amount of time

(e.g., at least 5min in a radius of 250 meters). For example,

Ashbrook and Starner (2003), used a modified k-means method

and Adams et al. (2006) used DBSCAN. In this study, we

modified an existing spatiotemporal clustering method available

in scikit-mobility (Pappalardo et al., 2019), which is based on the

DBSCAN clustering algorithm (Martin et al., 1996).

Once the POIs are well-defined, a variety of mobility

modeling approaches can be used. Ashbrook and Starner

used first-order Markov model to predict user-specific future

movements (Ashbrook and Starner, 2003). Imai et al. (2018)

proposed an interesting improvement of Markov-based

approaches, where the set of possible places to be visited

narrows down as the trip progresses. Their study included GPS

data of 1,646 users from commercial services.

Regarding feature-based ML approaches, Baumann et al.

(2013) analyzed a variety of spatial (e.g., current location

and previous location) and temporal features (e.g., day of the

week and weekday/weekend) as possible next-place predictors

using data of 37 users collected over a period of 1.5 years.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.891206
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Gjoreski et al. 10.3389/fcomp.2022.891206

Nitin et al. (2015) proposed amulti-level approach by predicting

the semantics of a place and then the specific place to be visited.

The feature set used in these studies include current location,

last call, hour of the day, day of the week and applications used.

Similarly, Bhaskar and La Porta (2015) used start minute, end

minute, normalized start time, and other related features, as

input to a Support Vector Machine classifier. Etter et al. (2012)

compared a variety of methods, including a majority classifier

(35% accuracy), first-order Markov model (44% accuracy),

deep belief network (60.7% accuracy), neural network (60.83%

accuracy) and gradient boosting trees (57.63% accuracy).

The most recent and advanced next-place predictors are

based on end-to-end deep learning methods. ST-RNN (Spatial

Temporal Recurrent Neural Networks), DeepMove (Jie et al.,

2018), RNN+SAtl (Jun et al., 2019) and Flashback (Dingqi

et al., 2020), are all based on RNNs or their variations (e.g.,

LSTMs or GRUs). DeepMove is an attentional RNN specifically

designed to address the problem of sparse trajectories. The

method utilizes multi-modal embedding layers to create a

dense representation of the spatiotemporal trajectories and

user-specific features (thus, it is a user-dependent model).

Additionally, the embeddings of the historical trajectories are

processed by an attention mechanism to extract mobility

patterns, while a GRU processes current trajectories. The output

of the multi-modal embedding, the GRU, and the attention

mechanism are concatenated and passed to a fully connected

layer that provides the final output (next-place prediction).

While being state-of-the-art for modeling human mobility,

these methods were developed and tested using centralized

approaches, using specialized hardware (e.g., GPU for deep

learning model), using large training datasets (e.g., 65 thousand

users) and they are offline methods.

Federated learning and privacy
preservation

Federated Learning (FL) is an iterative technique where each

device trains a personalized model on the device itself, and only

shares the weights of the trained model, thus protecting the

user data (Andrew et al., 2018). The personalized models are

then anonymously aggregated by a server to a general model.

The general model is then communicated back to the devices

again, where each device can either use the general model

or perform new updates over the general model using more

recent personal data. FL has been used in a variety of domains.

Yuanyishu et al. (2022) developed federated BERT—a large-

scale language model used for natural language processing. Ittai

et al. (2021) applied FL on COVID-19 data from twenty medical

institutions to develop a federated model that predicts the future

oxygen requirements of symptomatic patients. Usman et al.

(2022) explored FL for edge intelligence applied in the domain

of customer segmentation using sales data from an online store.

In the domain of FL for human mobility modeling,

some privacy concerns related to the next-place predictors

can be mitigated using federated next-place predictors (Zipei

et al., 2019; Jie et al., 2020). Nevertheless, these methods still

require large, labeled datasets including thousands of users and

require specialized hardware (GPUs) in the development process

(Castro et al., 2022). This is probably the reason why large deep

learning models are only evaluated using train-test splits (e.g.,

train of the first 50% of the data and test on the last 50% of the

data), which does not correspond to a real-life usage where a new

model is updated every day (online learning).

Counting visitors

Henrikki et al. (2017) analyzed data from Instagram, Twitter,

and Flickr, to estimate visitor statistics in 56 national parks

in Finland and South Africa in 2014. Hamstead et al. (2018)

explored visitation dynamics in New York City parks using

Twitter and Flickr data. In both studies, an association between

the social media data and the actual visitor counts was found,

although the strength of the association depended on the social

medial platform, e.g., the models based on Instagram data

outperformed the models based on Twitter and Flickr data

(Henrikki et al., 2017). In addition, the daily average number

of observed visitors in New York City parks had a Pearson’s

correlation coefficient of 0.58 with the daily average number

Flickr users, and a correlation coefficient of 0.76 with the

daily average number of Twitter users (Hamstead et al., 2018).

Interestingly, their analysis showed that parks with greater areas

of green space get fewer visitors, and proportion of minority

ethnicity and minority race in the neighborhoods of the parks

is also negatively correlated with the number of visitors.

Similarly, Fisher et al. (2018) explored Flickr

images and trip reports shared on a hiking forum, for

counting visitors at recreational areas in USA. Their

analysis showed that correlations between official Forest

Service statistics and geo-tagged images ranged between

0.55 and 0.95. For individual trails, monthly visitor

counts from on-site measurements were correlated

with counts from geo-tagged images (0.79) and trip

reports (0.91).

Nathaniel et al. (2020) used smartphone location data

in combination with weather data to estimate visitor count

for 500 water recreation centers in USA. They tested linear

models and Random Forest, with Random Forest showing

best results. Takahiro et al. (2020) used cellular data to

calculate the economic value of coastal tourism. They analyzed

536 places (beaches) across Japan, but they did not provide

ground truth for the analysis. Jung et al. (2020) used cell

data to analyze tradeoffs between visitation and biodiversity
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for an island park in Korea. Their analysis showed moderate

correlations between the cell data and monthly estimates of

visitation to several specific locations on the island (Pearson’s

correlation coefficient of 0.64). Christopher et al. (2019)

developed techniques for processing, sampling and calibration

that can be applied on cell data for counting vehicles in parks

in California. They statistically compared monthly estimates

produced by their model and direct counts and found no

significant differences.

The methods presented in these studies are rather simple

(mostly based on correlation analysis) and yet showed

that location-based analytics can be useful in a variety of

scenarios, from recreational tourism to counting vehicles in

the park. The findings in these studies further motivate

the need for cohort-based behavior analytics which can

shed a light not only on the visitor counts, but also

on the aggregated profile (cohort type) of the visitors,

which is much more informative. Additional improvement

to the centralized approaches presented in these studies,

i.e., location data from all users available at one place,

our study presents one step toward privacy-aware federated

analytics by creating decentralized models updated daily

(online learning).

Related work summary

Table 1 presents a summary comparison between our

proposed approach and the related-work methods. From the

table, it can be seen that the two main characteristics that

distinguish our method are the federated approaches (i.e.,

user-location data stays on the device), and online learning

(i.e., the models are continuously refined through time).

Theoretically, online learning should be possible also for the

three federated methods (PMF; Zipei et al., 2019; Jie et al.,

2020; Castro et al., 2022); however, these methods were only

evaluated using static train-test splits (e.g., train of the first

50% of the data and test on the last 50% of the data),

which does not correspond to real-life usage. Furthermore,

these methods are based on deep learning approaches that

require large, labeled datasets including thousands of users

and require specialized hardware (GPUs) in the development

process. Another important characteristic of our proposed

method is that it can work with small datasets (e.g., 80

users in our experimental setup) and with big datasets (e.g.,

65k users in our experimental setup). The final important

characteristic is that it can work in on-demand sensing

scenarios (e.g., Foursquare check-ins) and continuous sensing

scenarios. For the continuous sensing scenario, an additional

step is required to automatically discover the POIs, i.e.,

the spatiotemporal clustering that is part of our method.

Finally, none of the related methods provide privacy-aware

cohort-based analytics.

Datasets

We used three separate datasets in this study: the

Breadcrumbs dataset (Arielle et al., 2019), which is collected

by 80 smartphone users via continuous GPS sensing; the

Foursquare dataset, which is generated by 65 thousand

Foursquare users; and the Gowalla dataset which is generated

by 319 thousand users. The main difference among the

datasets, besides their size, is that Breadcrumbs is collected

with a sampling frequency close to 1Hz, whereas the data

in Foursquare and in Gowalla is collected via “on-demand”

sensing (check-ins).

Breadcrumbs dataset

The Breadcrumbs dataset was introduced by Arielle et al.

(2019) in 2019. The dataset was collected by 80 smartphone

users, mainly in the city of Lausanne (Switzerland), for a period

of 94 days. It contains data from continuous GPS sensing, user

demographic information, POIs (e.g., longitude and latitude

for each POI) and user-supplied semantic labels for the POIs

(e.g., university, home, restaurant, etc.). The motivation behind

the data collection campaign was to advance the research

in fields such as next-place prediction, trajectory prediction,

privacy preserving location-based services, and supervised and

unsupervised detection of points of interests.

To define cohorts of users, we used the demographic

information available in the dataset. We defined threes cohorts

based on the university the users attended, i.e., UNIL: 44 (55%);

EPFL: 29 (36%); Other: 7 (9%). Besides these, other cohorts can

be defined based on the demographic information, including

age, gender and nationality.

To segment the continuous GPS data, spatiotemporal

clustering algorithms are typically used to detect stop-points,

i.e., places (defined by a radius size) where the users spent

a certain amount of time (e.g., 5min). In this study, we

modified an existing spatiotemporal clustering method available

in scikit-mobility (Pappalardo et al., 2019), which is based on

the DBSCAN clustering algorithm (Martin et al., 1996). We

refer to the existing spatiotemporal clustering method as ST-

DBSCAN, and we refer to the modified method as Hierarchical

Spatiotemporal DBSCAN (HST-DBSCAN). More details about

the clustering methods are presented in Section Smartphone

users, and an experimental comparison between ST-DBSCAN

and HST-DBSCAN is presented with the experimental results

(Section POI detection for continuous sensing).

Figure 1 presents the relative frequency of the semantic

labels in the Breadcrumbs dataset obtained after using HST-

DBSCAN. For example, the most frequent semantic label

is Home (with a frequency close to 40%). The second

and the third most frequent semantic labels represent the

two main universities in Lausanne: the Swiss Institute of
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TABLE 1 Comparison between the proposed approach and the related work.

Methods Type Federated Online

learning

Needs

GPUs

Small

data, n <

1,000

Big data Continuous

sensing

On-

demand

sensing

Ashbrook and

Starner (2003),

Etter et al. (2012),

Baumann et al.

(2013), Bhaskar and

La Porta (2015),

Nitin et al. (2015),

Imai et al. (2018)

Next-place

predictors, classical

machine learning

No No No Yes No Yes No

DeepMove (Jie

et al., 2018),

RNN+SAtl (Jun

et al., 2019),

Flashback (Dingqi

et al., 2020)

Next-place

predictors, deep

learning

No No Yes No Yes No No

PMF (Zipei et al.,

2019; Jie et al., 2020;

Castro et al., 2022)

Next-place

predictors, deep

learning

Yes No Yes No Yes Yes Yes

Fisher et al. (2018),

Christopher et al.

(2019), Jung et al.

(2020), Nathaniel

et al. (2020), and

Takahiro et al.

(2020)

Counting visitors,

majority use

correlation analysis

No No No Yes Yes Yes Yes

Proposed approach Cohort-based

predictors

Yes Yes No Yes Yes Yes Yes

FIGURE 1

Semantic labels in Breadcrumbs and their relative frequency, obtained after HST-DBSCAN clustering.
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Technology (EPFL) and the University of Lausanne (UNIL). Not

surprisingly, the majority of the dataset was collected by EPFL

and UNIL students.

Foursquare dataset

The Foursquare dataset (Yang et al., 2016), is a widely

used dataset for the evaluation of location-based methods. The

specific version of the dataset used in our study contains 18

months (April 2012 to September 2013) of global-scale check-

in data collected from Foursquare. This dataset also contains

user profiles, including the gender, the number of friends, and

the number of followers the users have. The specific cohorts

analyzed in this study were based on the user gender, which have

the following distribution: Female: 25,061 (11%); Male: 168,327

(72%); Unknown: 41,207 (17%).

Figure 2 presents the 100 most frequently visited places

in the Foursquare dataset. The y-axis presents the relative

frequency (scaled by the overall number of check-ins in the

dataset) and on the x-axis is the category. Besides the category,

by using the longitude and latitude for these places one can also

get more details about each of them. For example, the first two

places are in the center of Istanbul (Turkey), the third place is

a bridge also in Istanbul, the fourth one is a train station in

Japan (Tokyo Station), and the fifth one is another train station

in Japan (Shinjuku Station).

Gowalla dataset

This dataset was collected from Gowalla, a location-based

social network, which had more than 600,000 users since

November 2010 and was acquired by Facebook in December

2011. The dataset authors used the Gowalla APIs to collect the

user profiles, user friendship, location profiles, and check-ins

(Liu et al., 2014). The released dataset contains 36 million check-

ins made by 319,063 users in 2.8 million locations. The locations

in Gowalla are grouped into 7 main categories, i.e., community,

entertainment, food, nightlife, outdoors, shopping and travel.

We defined four cohorts based on the number of friends

each user has: (1) Number of friends in [0–25th percentile]; (2)

Number of friends in [25th percentile to 50th percentile]; (3)

Number of friends in [50th percentile to 75th percentile]; and

(4) Number of friends above the 75th percentile. The 25th, 50th,

and 75th percentiles were calculated using the overall dataset.

Methods

For a given list of POIs (e.g., a specific restaurant defined

by GPS coordinates), our proposed method estimates the cohort

percentages (e.g., male and females, students and workers, young

and old, etc.) of the visitors in a privacy-aware manner. The

estimations can be summarizations of historical visits, but also

predictions about the future (e.g., week-ahead predictions). The

estimations are performed using aggregated and anonymized

historical data. The proposed method is depicted in Figure 3.

Smartphone users

At the beginning, the system shares a list of system-

defined POIs (defined via GPS coordinates) for which cohort-

based statistics is being collected. Next, the participants can

select to which (system-defined) cohort they belong (e.g.,

their gender, occupation, or other demographics). For cohorts

that require general statistics, e.g., what is the participant’s

rank compared to the rest of the users of the system, the

system sends to all participants decision rules based on

FIGURE 2

Top 100 places ranked by the number of check-ins scaled by the overall number of check-ins in the Foursquare dataset.
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FIGURE 3

Proposed method for privacy-aware federated analytics of cohorts for smart mobility.

which the participant’s cohort is defined. These rules can

be as simple as, if you travel more than n km a day, you

are in the top 25% of the participants. Furthermore, the

participants can opt-out both from the cohorts and the POIs

for which they do not want to share their data. This allows

participants to inspect and control the data collection practices

(Langheinrich, 2002).

Next, the participants should enable continuous GPS sensing

locally on their device, or use manual check-ins. In the case

of manual check-ins, the data is already segmented on POIs.

In the other case, the continuous GPS data need to be

segmented on POIs using spatiotemporal clustering method

running locally on the device. For this task, we initially

used the spatiotemporal clustering method based on DBSCAN

(ST-DBSCAN) as implemented in scikit-mobility No Matches

Found, which worked well in general, but it also produced

clusters with big radii, mostly because ST-DBSCAN does not

allow us to specify the maximum radius of a cluster. The

algorithm does allow one to specify the maximum distance

between any two points within the same cluster, which is

different from a cluster radius. We thus implemented HST-

DBSCAN.HST-DBSCANutilizes ST-DBSCAN as a basemethod

but goes one step further by ensuring that each cluster has a

radius smaller than a predefined threshold. That threshold was

set to 250 meters in this study because we wanted to focus

on specific places (e.g., library, restaurant) and not regions.

This is done by splitting clusters with bigger radii into clusters

with smaller radii, which is a process that requires running ST-

DBSCAN several times. This process produces a hierarchy of

clusters and in this work, we used the clusters at the lowest level

of the hierarchy. The radius of the clusters R was calculated as

the maximum geodesic distance G between the cluster’s median

(defined with median longitude and median latitude) and any

GPS point x within that cluster. G is the shortest distance

on the surface of an ellipsoidal model of the earth (Charles,

2013).

R = max
(

G
([

Lonmedian, Latmedian

]

, [Lonx, Latx]
))

An experimental comparison between ST-DBSCAN and

HST-DBSCAN is presented with the experimental results

(Section POI detection for continuous sensing).

Server—secure aggregation and
modeling

The goal of this step is to count the number of visitors

per POI that belong to a specific cohort. This information

is available locally on the participant’s devices, i.e., we know

when a specific participant visited a specific POI. Using secure

multiparty computation, we can compute sums of the visitors

for each POI. The specific protocol used in this study is “Practical

Secure Aggregation” (Bonawitz et al., 2017) proposed by Google

and implemented in the machine-learning platform TensorFlow

Federated. The protocol was specifically designed for securely

computing sums of vectors, and has a constant number of

rounds, low communication overhead, robustness to failures,

and requires only one server with limited trust. The server routes

messages between the participants and calculates the final sum.

From the final calculation, the server only learns the results,

and it cannot learn the number of devices that participated in

the computation. Formal privacy guarantees of the protocol are

presented in the original study of the protocol (Bonawitz et al.,

2017). This protocol has been also utilized for generating city-

level location heatmaps (e.g., Manhattan) in a privacy-aware

manner on (Eugene et al., 2021)—which is different than our

study as we focus on fine-grained analysis based on smartphone

sensing and online learning.

Dropout rate is an important characteristic that influences

the computed sums. For example, at certain days, some

devices may not be available for participating during the

secure aggregation. This would cause an under-estimation of

the number of visitors. That is why our method focuses on

cohort percentage, and not the actual numbers of the visitors.

For example, if we have 100 male participants and 50 female

participants at a dropout rate of 10%, the secure aggregation will
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FIGURE 4

Evaluation technique used for evaluating week-ahead predictive models.

count 90 out of 100 male participants and 45 out of 50 female

participants. This is under the assumption that the dropout rate

is constant for the whole system across the related cohorts (10%

in this example). Thus, the cohort percentages estimated with

a 10% dropout rate would be equal to the cohort percentages

estimated under perfect conditions (0% dropout rate). To put

this example into numbers, see Equation (1):

females at 10% dropout =
45

45+ 90
= 33% =

50

50+ 100

= females at 0% dropout (1)

To estimate the actual error induced by the dropout

rate, we performed experiments with varying dropout

rate between 0 and 50% (see Section Dropout rate and

error rate).

The cohort percentages are computed on a daily basis

and are stored locally on the server for further modeling.

The modeling can be simple summarizations of historical

visits, but also predictions about the future. For example,

we experimented with predictive models that estimate

average cohort percentages 1-week ahead (see Section

Next-week predictions).

Experiments

This section presents the study’s experimental results.

The first subsection presents the results from the automatic

detection of POIs in the Breadcrumbs dataset. For the

Foursquare and theGowalla datasets, we performed experiments

with the top 100 POIs, ranked by the number of overall

check-ins. After the POI detection, all datasets were in a

similar format, i.e., user, user cohort, place (POI) and time

of visits.

In the second set of experiments (Section Dropout

rate and error rate), we evaluated the relation between

the dropout rate and the error for estimating the cohort

percentages. For quantifying the error, we used Mean Absolute

Error (MAE):

MAE (in percentage points) =
1

N

N
∑

1

|Acual Cohort Percentage

−Estimated Cohort Percentage|

where N is the number of POIs in the specific dataset.

In the third set of experiments (Section Next-week

predictions), we explored the possibility to predict

the average cohort percentages 1-week ahead for each

POI. For these experiments we tested four simple

predictive models:

1. Autoregressive Integrated Moving Average (ARIMA)—

POI-specific and Cohort-specific ARIMA models,

i.e., the models were fitted for each POI and each

cohort separately. Furthermore, the method’s main

parameters, auto-regressive order (p), the degree of

differencing (d), and the moving-average order (q),

were tuned for each model specifically using Akaike

information criterion.

2. Overall mean predictor—POI-specific and Cohort-specific

models that output the mean cohort percentage calculated

from the historical data.

3. 3-weeks mean predictor—POI-specific and Cohort-

specific models that output the mean cohort percentage

calculated from the past 3 weeks.

4. 1-week mean predictor—POI-specific and Cohort-specific

models that output the mean cohort percentage calculated

from the past 1 weeks.

To evaluate the predictive models, we used an approach that

represents a real-life, online usage:

• We used weekly evaluation depicted in Figure 4. In the

Nth iteration, the models are fitted using the data of the

previous N weeks and they are tested using the data

of the (Nth+1) week. Thus, the models are using the

overall historical data to predict next-week’s average cohort
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percentages. The same procedure was repeated for the

three datasets.

• The models were fitted using noisy data, i.e., at each week

we used a random dropout rate uniformly sampled from

the interval [0–50%].

• The models’ predictions were evaluated against the actual

next-week cohort percentages.

Finally, Section Analytics of cohorts presents examples for

federated analytics of cohorts.

POI detection for continuous sensing

To define POIs in the Breadcrumbs dataset, i.e., joint

places where the users spend most of their time, we used

the HST-DBSCAN clustering algorithm. We focused on

joint POIs and not on personal POIs because joint POIs

allow for privacy-aware cohort-based analytics, and because

modeling of personal POIs may single-out users via their

unique POIs (e.g., home location). The algorithm used

the following parameters: 5min waiting time (stop-points

with a smaller duration were disregarded) and 250 meters

maximum cluster radius. Figure 5 presents a comparison

between the clusters generated with ST-DBSCAN and HST-

DBSCAN. From the boxplots we see that HST-DBSCAN

FIGURE 5

Cluster radius—ST-DBSCAN vs. HST-DBSCAN.

generates clusters with smaller radius, which should lead to

“cleaner” POIs.

From the generated clusters, we selected only those that had

more than 5 visitors per day on average. This led to 8 POIs

depicted in Figure 6. These POIs will serve as example places

for which the method can generate federated analytics. In a

real-life scenario, such places could be predefined with specific

GPS coordinates (e.g., central train station in a specific city, a

specific restaurant, etc.), so a centralized clustering approach

would not be required. However, even with predefined POIs,

HST-DBSCAN may be needed to detect stop-points on the user

device when continuous sensing is used.

Dropout rate and error rate

The results of these experiments are presented in Figure 7.

The figures in the left column depict the relation between

the dropout rate and the MAE (in percentage points). The

histograms in the right column depict the distribution of the

cohort percentages calculated from the experimental data. A

general observation for all datasets is that a bigger dropout

rate causes a bigger MAE, which is expected. However, this

relationship is sublinear, i.e., a dropout rate 50% does not cause

a MAE of 50 percentage points, but rather the average MAE

in most of the experiments is below 8 percentage points. For

the Gowalla dataset (top left figure), the largest error of 5

percentage points can be seen for the green cohort “# Friends

percentile in [50–75].” This is also the largest cohort, as it can

be seen from the Gowalla histogram (top right figure). Similar

relation can be seen also for the Breadcrumbs dataset, where

the larger cohorts (EPFL and UNIL) have a larger MAE. This

relation is expected because for these cohorts the predictive

models work on a larger scale. For a cohort that is represented

with <10% of the overall population, it is normal that the

MAE (expressed in percentage points) is much lower than 10

percentage points. For the Foursquare dataset, we present MAE

only for one cohort because the error for the second is equal to

the presented one (note that here we have only two cohorts). The

MAE ranges between 0 and 8 percentage points, depending on

the dropout rate.

FIGURE 6

Heatmap of the GPS data available in the dataset and location of the POIs analyzed in this study.
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FIGURE 7

The three figures in the left column represent the relation between dropout rate (x-axis) and the corresponding Mean Absolute Error (y-axis)

averaged across all POIs in each dataset. The shaded areas represent 95% confidence intervals. The three figures in the right column represent

the distribution of the relative cohort size calculated over all POIs in one dataset. Each row represents one dataset (from top to bottom:

Gowalla, Breadcrumbs and Foursquare).

Next-week predictions

The results of these experiments are presented in Table 2.

The table contains average values and standard deviations for

the Pearson’s Correlation Coefficients (PPC) and MAE (in

percentage points), calculated for the four predictive models,

MO (overall mean predictor), M3 (3-weeks mean predictor),

M1 (1-week mean predictor) and A (ARIMA). For most of the

cohorts (6 out of 9), the best predictor is the M1 predictor

which has a PCC above 0.8 (strong correlation). For one cohort,

the PCC achieved by the M1 predictor is 0.71 (Gowalla—#

Friends: Perc. 25–50). The other two cohorts, which represent

special cases (Gowalla—“# Friends: Perc. 0–25” and Gowalla—

“# Friends: Perc. 75–100”), the PCC is low because these cohorts

are rare for the analyzed POIs and thus are hard to model. The

cohort distribution can be seen in Figure 7 (top-left histogram).
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TABLE 2 Pearson’s Correlation Coe�cient (PCC) and Mean Absolute Error (MAE) for predicting next-week’s average cohort ratios.

Cohort # Friends: Perc. 0–25 # Friends: Perc. 25–50 #Friends: Perc. 50–75 # Friends: Perc. 75–100

Gowalla

Model A MO M1 M3 A MO M1 M3 A MO M1 M3 A MO M1 M3

PCC avg. 0.29 0.35 0.25 0.33 0.75 0.66 0.71 0.76 0.83 0.63 0.82 0.84 / / / /

PCC std. 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 / / / /

MAE avg. 2 2 2 2 6 12 7 6 9 23 10 9 0.1 0.1 0.1 0.1

MAE std. 1 1 1 1 2 4 2 2 2 5 3 2 0.1 0.1 0.1 0.1

Cohort University: EPFL University: UNIL University: other

Breadcrumbs

Model A MO M1 M3 A MO M1 M3 A MO M1 M3

PCC avg. 0.64 0.38 0.83 0.38 0.77 0.05 0.88 0.32 0.55 0.2 0.88 0.52

PCC std. 0.3 0.2 0.1 0.2 0.2 0.2 0.1 0.4 0.4 0.5 0.1 0.3

MAE avg. 7 11 4 7 7 14 3 9 1 2 0.1 1

MAE std. 5 7 3 4 4 7 3 6 1 2 1 2

Cohort Gender: male Gender: female or unknown

Foursquare

Model A MO M1 M3 A MO M1 M3

PCC avg. 0.6 0.12 0.81 0.55 0.6 0.12 0.81 0.55

PCC std. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

MAE avg. 9 14 6 11 9 14 6 11

MAE std. 3 3 1 2 3 3 1 2

Predictive models: A, Arima; MO, Overall Mean; M3, 3-weeks mean; M1, 1-week mean.

Because these cohorts are rare, the MAE scores achieved by the

same predictor are also low (2 and 0.1).

Regarding the overall MAE scores, theM1 predictor is better

than the M3 predictor, and the two are also better than the

MO predictor. This confirms that online learning approach,

where the models are updated weekly (or even daily), is the

most suitable approach for this task. Furthermore, the ARIMA

predictors performed similarly as the M3 predictors (in some

cases even better), but worse than theM1 predictor. The ARIMA

models were fitted using the overall historical data, whichmay be

one cause for the underperforming.

The weekly MAE scores for the two best performing

predictors (M1 and ARIMA) are presented in Figure 8. The

MAE scores are averaged across all cohorts and all POIs in

each dataset. From the weekly MAE curves, it can be seen that

the ARIMA predictor performed slightly better than the M1

predictor for the Gowalla dataset, but also performed slightly

worse for the other two dataset. Furthermore, the Foursquare

dataset seem to be more complex for modeling since the MAE

curves exhibit higher irregularities.

Analytics of cohorts

Figure 9 presents an example cohort analytics that could be

provided to the operators of a specific place (in this case a shop

and a restaurant nearby). From the analytics, the owners of the

place can see the ratio of “Swiss” vs. “Other” nationality visitors

for each weekday. More specifically, we see that during most

working days (Tuesday through Friday to be more precise), the

ratio of “Swiss” to “Other” visitors is close to 50/50. However,

during the other days most of the visitors are non-Swiss.

Limitations and future work

The cohorts used in the experiments were based on the

descriptive information available in the experimental datasets.

Besides such pre-defined cohorts, automatic detection of cohorts

could be exploited in the future. For example, one assumption

could be that similar participants visit similar places, thus

cohorts could be automatically detected by clustering the

descriptions of the places the participants visit. Such clustering

could be performed in privacy-preserving manner, e.g., using

Google’s approach for Federated Learning of cohorts (FloC)

(Google Research Ads., 2020). The idea in FloC is that the

participants do not send their private data to a centralized

server, but rather the server sends to the participants a

trained clustering model, which is then executed on the

participants’ devices to determine to which cohort each

participant belongs. Another approach would be grouping

participants with respect to their privacy-preferences, as recently
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FIGURE 8

Weekly Mean Absolute Error (MAE in percentage points) for predicting next-week’s cohort ratios in each of the three datasets (Gowalla,

Foursquare and Breadcrumbs) using ARIMA predictor and simple 1-week mean predictor. The MAE numbers are averaged for all POIs in one

dataset. The shaded areas represent 95% confidence intervals.

proposed by Tongqing et al. (2021). However, while this

technique enables k-anonymity, it would create cohorts that are

not intuitively explainable.

The federated analytics of cohorts that the method provides

for each place depends on historical data available for that

specific place. Thus, finding a representative sample for each

place may be one of the biggest challenges for applying the

presented method in real-life scenarios. One possible solution

is to utilize historical location data that participants already

store, e.g., as part of the Google Maps timeline. Nevertheless,

monetary or similar incentives should be provided to the

data-sharing participants as the awareness about the value of

such data increases (Goldfarb and Tucker, 2012). Therefore, a

balance between participants and businesses must be reached,

where participants knowingly agree to share their data with

individual businesses, and businesses provide some value to

the participants in return. Some companies even tried to

develop this idea of data-exchange transparency by providing

a decentralized data marketplace, where citizens could sell

their data, and businesses acquire it. For location data in

particular, other companies were able to take advantage of the

social needs of users through gamification, like Gowalla and

Foursquare. In other cases, the benefits for participants are more

obvious and direct. Location applications included by default in

smartphones, like Apple Maps, Google Maps, and Bing Maps,

provide a wealth of up-to-date information about different POIs

(like shops, restaurants, museums, public venues, and more),

allowing application users to make informed decisions about

places to visit and things to do. Maps applications produce real

and tangible value to their users in exchange for their location

data. As our approach can be considered as a layer on top of

those applications, participants would not need to collect any

additional data to what they already do, but they would benefit

from additional monetary or similar incentives.
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FIGURE 9

Example cohort (nationality) analytics provided to place operators (analytics users). Y-axis: aggregated cohort ratio. X-axis top figure: day of the

week through the 3 months study. X-axis left figure: split-violin plots for each day of the week. Green: Swiss nationality. Orange: Other

nationality. Breadcrumbs dataset.

Implications

In this study we evaluate the proposed method using

GPS data acquired from smartphones. However, the proposed

method is general, and it can be applied to any type of data

that provides information about user’s proximity to a specific

Point Of Interest (POI). A successful real-world implementation

of the method would enable IoT service providers to develop

innovative and efficient services while preserving the privacy of

the users. Example use-cases include:

• Information provision—Future smart environments are

likely to be saturated with networks of digital displays (e.g.,

digital signs) (Davies et al., 2012) that can be used for a wide

range of applications and will provide an important new

form of communication (Elhart et al., 2017). The current

state-of-the-art in understanding how users interact with

these displays is to equip each display with a camera that

can record basic demographics on the audience in front of

the display at any point in time. This demographic data

can be combined with a record of the content shown to

provide basic audience statistics. Such approach is both

privacy intrusive and limited to the characteristics that

can be recognized using video analysis. On the other

hand, our proposed method offers similar functionalities

tracked in a privacy-aware manner (e.g., cohort-based

analytics instead of person-based analytics) and in addition

it holds the potential to provide enriched LBA since the

users may be willing to provide more characteristics for

such privacy-aware cohort-based analytics. For example,

knowing the type of viewers through the cohort-based

analytics may help provide insights into viewer behaviors

(e.g., which groups of viewers are more likely to purchase

items based on the behavior of the viewers from the

same cohort).

• Environmental exposure—There is currently significant

research interest in deploying environmental sensors

in urban environments to monitor factors such as

temperature, noise, and air quality (Hart and Martinez,

2006). In contrast to classic environmental monitoring in

which sensors are a scarce resource, emerging systems

feature large numbers of sensors that are widely deployed

(Rawat et al., 2014). While such sensors can provide

precise measurements of environmental conditions in a

particular location, they are unable to capture the exposure

of cohorts as they move around the urban environment.

For example, while sensors can provide detailed maps of

pollution hot-spots within a city, estimating the exposure

of cohorts requires an understanding of their movement

within the city. To address this shortcoming, researchers

have explored the use of personal, wearable environmental

sensors (Oscar and Labrador, 2012). However, it is

unrealistic to expect citizens to carry and maintain such

sensors for any significant period. The proposed cohort-

based analytics would enable the production of reports

from a fixed sensor base that captures the exposure of a

specific cohort of users to environmental factors, helping

to understand risk profiles for different user groups and

the effectiveness of interventions such as pollution-aware

routing (Jarjour et al., 2013).
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• Cohort-based energy profiling—Modern buildings include

a wide range of monitoring systems that can report on

factors such as occupancy levels, temperature, and energy

consumption on a room-level granularity. Such systems

enable organizations to carefully monitor energy use in

terms of buildings. Inmost of the cases, the existing insights

target specific buildings or energy meters. The ability to

provide LBA that report at cohort level would allow a

fundamentally different understanding of how energy is

“spent” to support different activities and user groups.

Conclusion

This study presented a novel privacy-aware method

for federated analytics of cohorts for smart mobility. The

experimental results confirmed that the method works both

for small datasets (the Breadcrumbs dataset) and large datasets

(the Foursquare and the Gowalla datasets), and it works both

for continuous GPS sensing and on-demand sensing (check-

ins). The method is easy to implement as it does not require

specialized hardware (e.g., GPUs). Furthermore, the method

is based on an online learning approach, where updates are

communicated daily. This allows to track distribution shifts in

the data, which solves one more problem that many methods

have in dynamic environments.
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