4,852 research outputs found

    Weak convergence of marked point processes generated by crossings of multivariate jump processes. Applications to neural network modeling

    Get PDF
    We consider the multivariate point process determined by the crossing times of the components of a multivariate jump process through a multivariate boundary, assuming to reset each component to an initial value after its boundary crossing. We prove that this point process converges weakly to the point process determined by the crossing times of the limit process. This holds for both diffusion and deterministic limit processes. The almost sure convergence of the first passage times under the almost sure convergence of the processes is also proved. The particular case of a multivariate Stein process converging to a multivariate Ornstein-Uhlenbeck process is discussed as a guideline for applying diffusion limits for jump processes. We apply our theoretical findings to neural network modeling. The proposed model gives a mathematical foundation to the generalization of the class of Leaky Integrate-and-Fire models for single neural dynamics to the case of a firing network of neurons. This will help future study of dependent spike trains.Comment: 20 pages, 1 figur

    Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the Potts model

    Get PDF
    By relating the ground state of Temperley-Lieb hamiltonians to partition functions of 2D statistical mechanics systems on a half plane, and using a boundary Coulomb gas formalism, we obtain in closed form the valence bond entanglement entropy as well as the valence bond probability distribution in these ground states. We find in particular that for the XXX spin chain, the number N_c of valence bonds connecting a subsystem of size L to the outside goes, in the thermodynamic limit, as = (4/pi^2) ln L, disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/(3 ln 2) ln L. Our results generalize to the Q-state Potts model.Comment: 4 pages, 2 figure

    The antiferromagnetic transition for the square-lattice Potts model

    Get PDF
    We solve the antiferromagnetic transition for the Q-state Potts model (defined geometrically for Q generic) on the square lattice. The solution is based on a detailed analysis of the Bethe ansatz equations (which involve staggered source terms) and on extensive numerical diagonalization of transfer matrices. It involves subtle distinctions between the loop/cluster version of the model, and the associated RSOS and (twisted) vertex models. The latter's continuum limit involves two bosons, one which is compact and twisted, and the other which is not, with a total central charge c=2-6/t, for sqrt(Q)=2cos(pi/t). The non-compact boson contributes a continuum component to the spectrum of critical exponents. For Q generic, these properties are shared by the Potts model. For Q a Beraha number [Q = 4 cos^2(pi/n) with n integer] the two-boson theory is truncated and becomes essentially Z\_{n-2} parafermions. Moreover, the vertex model, and, for Q generic, the Potts model, exhibit a first-order critical point on the transition line, i.e., the critical point is also the locus of level crossings where the derivatives of the free energy are discontinuous. In that sense, the thermal exponent of the Potts model is generically nu=1/2. Things are profoundly different for Q a Beraha number, where the transition is second order, with nu=(t-2)/2 determined by the psi\_1 parafermion. As one enters the adjacant Berker-Kadanoff phase, the model flows, for t odd, to a minimal model of CFT with c=1-6/t(t-1), while for t even it becomes massive. This provides a physical realization of a flow conjectured by Fateev and Zamolodchikov in the context of Z\_N integrable perturbations. Finally, we argue that the antiferromagnetic transition occurs as well on other two-dimensional lattices

    Conformal boundary loop models

    Get PDF
    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x = q + 1/q satisfies -2 < x <= 2, this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y_r = [r+1]_q / [r]_q with r integer, other identities involving the standard characters K_{r,s} of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y = y_r, exact connections with the A_m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y_r are related to the theory of Temperley Lieb cabling.Comment: 28 pages, 19 figures, 2 tables. v2: added new section 3.2, amended figures 17-18, updated reference

    Detektion organischer Moleküle mit Hilfe von heizbaren Elektroden im negativen Potentialbereich

    Get PDF
    Es wurden direkt heizbare Bismutelektroden entwickelt, welche für den Einsatz im negativen Potentialbereichen geeignet sind. Mit diesen Elektroden konnten kleinste Konzentrationen organischer Moleküle detektieret werden. Weiterhin ist es gelungen, Hybridisierungen von Nukleinsäuren an geheizten Goldelektroden durchzuführen. Es ist dabei gelungen, sowohl DNA- als auch RNA-Stränge mit dem Komplex [OsO4(bipy)] zu markieren und zu detektieren. Durch den Einsatz erhöhter Temperaturen konnten außerdem Fehlpaarungen in DNA-Strängen zuverlässig nachgewiesen werden.For a bigger commensurable potential range we used directly heatable bismuth electrodes. With these electrodes it was possible to measure in a more negative potential. We could detect a very small amount of organic molecules. Furthermore we could detect hybridization reactions on heated gold electrodes. We used targed strands labeled with the complex [OsO4(bipy] and detect them on immobilized probes. It was possible to label DNA and RNA-strands. The use of higher temperatures enabled the separation of complementary DNA-targets and targets containing mismatches

    A comparison of two strategies for generating sound zones in a room.

    Get PDF

    Is the five-flow conjecture almost false?

    Get PDF
    The number of nowhere zero Z_Q flows on a graph G can be shown to be a polynomial in Q, defining the flow polynomial \Phi_G(Q). According to Tutte's five-flow conjecture, \Phi_G(5) > 0 for any bridgeless G.A conjecture by Welsh that \Phi_G(Q) has no real roots for Q \in (4,\infty) was recently disproved by Haggard, Pearce and Royle. These authors conjectured the absence of roots for Q \in [5,\infty). We study the real roots of \Phi_G(Q) for a family of non-planar cubic graphs known as generalised Petersen graphs G(m,k). We show that the modified conjecture on real flow roots is also false, by exhibiting infinitely many real flow roots Q>5 within the class G(nk,k). In particular, we compute explicitly the flow polynomial of G(119,7), showing that it has real roots at Q\approx 5.0000197675 and Q\approx 5.1653424423. We moreover prove that the graph families G(6n,6) and G(7n,7) possess real flow roots that accumulate at Q=5 as n\to\infty (in the latter case from above and below); and that Q_c(7)\approx 5.2352605291 is an accumulation point of real zeros of the flow polynomials for G(7n,7) as n\to\infty.Comment: 44 pages (LaTeX2e). Includes tex file, three sty files, and a mathematica script polyG119_7.m. Many improvements from version 3, in particular Sections 3 and 4 have been mostly re-writen, and Sections 7 and 8 have been eliminated. (This material can now be found in arXiv:1303.5210.) Final version published in J. Combin. Theory
    • …
    corecore