85 research outputs found

    Aerosol Nucleation and Growth in a Mixture of Sulfuric Acid / Alpha-Pinene Oxidation Products at the CERN CLOUD Chamber

    Get PDF
    The role of α-pinene in aerosol nucleation and growth was investigated using the CERN CLOUD chamber, a nano scanning mobility particle sizer (nanoSMPS) and several condensation particle counters (CPCs) with different diameter cut-offs. Different oxidation conditions for α-pinene - OH⋅ vs. ozone oxidation - were considered to investigate their contributions to particle nucleation and growth. Results from the latest CERN experiment from fall 2012 (CLOUD 7) are presented

    Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry

    Get PDF
    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)(2)NH) using the NO3-center dot(HNO3)(1-2)center dot(DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and similar to 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38% RH.Peer reviewe

    Detection of dimethylamine in the low pptv range using nitrate chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry

    Get PDF
    Amines are potentially important for atmospheric new particle formation, but their concentrations are usually low with typical mixing ratios in the pptv range or even smaller. Therefore, the demand for highly sensitive gas-phase amine measurements has emerged in the last several years. Nitrate chemical ionization mass spectrometry (CIMS) is routinely used for the measurement of gas-phase sulfuric acid in the sub-pptv range. Furthermore, extremely low volatile organic compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine (DMA, (CH3)(2)NH) using the NO3-center dot(HNO3)(1-2)center dot(DMA) cluster ion signal. Calibration measurements were made at the CLOUD chamber during two different measurement campaigns. Good linearity between 0 and similar to 120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38% RH.Peer reviewe

    Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation

    Get PDF
    Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.Peer reviewe

    Formation of Highly Oxygenated Organic Molecules from alpha-Pinene Ozonolysis : Chemical Characteristics, Mechanism, and Kinetic Model Development

    Get PDF
    Terpenes are emitted by vegetation, and their oxidation in the atmosphere is an important source of secondary organic aerosol (SOA). A part of this oxidation can proceed through an autoxidation process, yielding highly oxygenated organic molecules (HOMs) with low saturation vapor pressure. They can therefore contribute, even in the absence of sulfuric acid, to new particle formation (NPF). The understanding of the autoxidation mechanism and its kinetics is still far from complete. Here, we present a mechanistic and kinetic analysis of mass spectrometry data from α-pinene (AP) ozonolysis experiments performed during the CLOUD 8 campaign at CERN. We grouped HOMs in classes according to their identified chemical composition and investigated the relative changes of these groups and their components as a function of the reagent concentration. We determined reaction rate constants for the different HOM peroxy radical reaction pathways. The accretion reaction between HOM peroxy radicals was found to be extremely fast. We developed a pseudo-mechanism for HOM formation and added it to the AP oxidation scheme of the Master Chemical Mechanism (MCM). With this extended model, the observed concentrations and trends in HOM formation were successfully simulated.Peer reviewe

    Bacteria in milk from anterior and posterior mammary glands in sows affected and unaffected by postpartum dysgalactia syndrome (PPDS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of piglet weight gain is strongly dependent on the sow's ability to meet the demand for adequate milk. Postparturient disorders, especially those subsumed under the term postpartum dysgalactia syndrome (PPDS), can alter or reduce the milk production sensitively, resulting in starving piglets. The aim of this study was to gather further information about the prevalence of different bacterial species in the anterior and posterior mammary glands of sows with respect to the clinical appearance of PPDS.</p> <p>Methods</p> <p>In this study, the health status of 56 sows after farrowing was determined with special regard to mastitis and dysgalactia. Pooled milk samples from anterior and posterior glands were taken from both affected and non-affected animals and analysed bacteriologically for the presence of a wide spectrum of different pathogens.</p> <p>Results</p> <p>Mainly <it>Escherichia coli</it>, staphylococci and streptococci were detected in high percentages but without significant differences in healthy and diseased animals and anterior and posterior glands. However, the large percentages of coliform bacteria suggested a transmission route via faecal contamination.</p> <p>Conclusion</p> <p>In this study, the prevalence of different bacteria in anterior and posterior glands in PPDS positive and negative sows was analysed. No significant differences in bacteria of healthy and diseased sows were assessed. Therefore, the development of clinical PPDS and actual infection seems to be largely dependant on individual resistance in single sows.</p

    Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    Get PDF
    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298K, sulfuric acid concentrations between 5x10(5) and 1x10(9)cm(-3), and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of -1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75ion pairs cm(-3)s(-1) to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.Peer reviewe

    Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation

    Get PDF
    It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1-2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of alpha-pinene at 5 degrees C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and -25 degrees C). Most negative HOM clusters include a nitrate (NO3-) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH4+) 4) ion, and the spectra are characterized by mass bands that differ in their molecular weight by similar to 20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (-25 degrees C), the presence of C-30 clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.Peer reviewe
    • 

    corecore