90 research outputs found

    Тематика XV Мiжнародного з'їзду славiстiв (Мiнськ, Бiлорусь, 2013 р.)

    Get PDF
    The family Picornaviridae comprises of small, non-enveloped, positive-strand RNA viruses and contains many human and animal pathogens including enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus 71 and rhinovirus), cardioviruses (e.g. encephalomyocarditis virus), hepatitis A virus and foot-and-mouth disease virus. Picornavirus infections activate a cytosolic RNA sensor, MDA5, which in turn, induces a type I interferon response, a crucial component of antiviral immunity. Moreover, picornaviruses activate the formation of stress granules (SGs), large aggregates of preassembled mRNPs (messenger ribonucleoprotein particles) to temporarily store these molecules upon cellular stress. Meanwhile, picornaviruses actively suppress these antiviral responses to ensure efficient replication. In this review we provide an overview of the induction and suppression of the MDA5-mediated IFN-α/β response and the cellular stress pathway by picornaviruses

    Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage.

    Get PDF
    UNLABELLED: In response to stress such as virus infection, cells can stall translation by storing mRNAs away in cellular compartments called stress granules (SGs). This defense mechanism favors cell survival by limiting the use of energy and nutrients until the stress is resolved. In some cases it may also block viral propagation as viruses are dependent on the host cell resources to produce viral proteins. Human norovirus is a member of the Caliciviridae family responsible for gastroenteritis outbreaks worldwide. Previous studies on caliciviruses have identified mechanisms by which they can usurp the host translational machinery, using the viral protein genome-linked VPg, or regulate host protein synthesis through the mitogen-activated protein kinase (MAPK) pathway. Here, we examined the effect of feline calicivirus (FCV) infection on SG accumulation. We show that FCV infection impairs the assembly of SGs despite an increased phosphorylation of eukaryotic initiation factor eIF2α, a hallmark of stress pathway activation. Furthermore, SGs did not accumulate in FCV-infected cells that were stressed with arsenite or hydrogen peroxide. FCV infection resulted in the cleavage of the SG-nucleating protein Ras-GTPase activating SH3 domain-binding protein (G3BP1), which is mediated by the viral 3C-like proteinase NS6(Pro) Using mutational analysis, we identified the FCV-induced cleavage site within G3BP1, which differs from the poliovirus 3C proteinase cleavage site previously identified. Finally, we showed that NS6(Pro)-mediated G3BP1 cleavage impairs SG assembly. In contrast, murine norovirus (MNV) infection did not impact arsenite-induced SG assembly or G3BP1 integrity, suggesting that related caliciviruses have distinct effects on the stress response pathway. IMPORTANCE: Human noroviruses are a major cause of viral gastroenteritis, and it is important to understand how they interact with the infected host cell. Feline calicivirus (FCV) and murine norovirus (MNV) are used as models to understand norovirus biology. Recent studies have suggested that the assembly of stress granules is central in orchestrating stress and antiviral responses to restrict viral replication. Overall, our study provides the first insight on how caliciviruses impair stress granule assembly by targeting the nucleating factor G3BP1 via the viral proteinase NS6(Pro) This work provides new insights into host-pathogen interactions that regulate stress pathways during FCV infection

    The Murine Coronavirus Hemagglutinin-esterase Receptor-binding Site: A Major Shift in Ligand Specificity through Modest Changes in Architecture

    Get PDF
    The hemagglutinin-esterases (HEs), envelope glycoproteins of corona-, toro- and orthomyxoviruses, mediate reversible virion attachment to O-acetylated sialic acids (O-Ac-Sias). They do so through concerted action of distinct receptor-binding (‘‘lectin’’) and receptor-destroying sialate O-acetylesterase (’’esterase’’) domains. Most HEs target 9-O-acetylated Sias. In one lineage of murine coronaviruses, however, HE esterase substrate and lectin ligand specificity changed dramatically as these viruses evolved to use 4-O-acetylated Sias instead. Here we present the crystal structure of the lectin domain of mouse hepatitis virus (MHV) strain S HE, resolved both in its native state and in complex with a receptor analogue. The data show that the shift from 9-O- to 4-O-Ac-Sia receptor usage primarily entailed a change in ligand binding topology and, surprisingly, only modest changes in receptor-binding site architecture. Our findings illustrate the ease with which viruses can change receptor-binding specificity with potential consequences for host-, organ and/or cell tropism, and fo

    Attachment of Mouse Hepatitis Virus to O-Acetylated Sialic Acid Is Mediated by Hemagglutinin-Esterase and Not by the Spike Protein▿

    No full text
    The members of Betacoronavirus phylocluster A possess two types of surface projections, one comprised of the spike protein (S) and the other of hemagglutinin-esterase (HE). Purportedly, these viruses bind to O-acetylated sialic acids (O-Ac-Sias) primarily through S, with HE serving merely as receptor-destroying enzyme. Here, we show that, in apparent contrast to human and ungulate host range variants of Betacoronavirus-1, murine coronaviruses actually bind to O-Ac-Sias via HE exclusively. Apparently, expansion of group A betacoronaviruses into new hosts and niches was accompanied by changes in HE ligand and substrate preference and in the roles of HE and S in Sia receptor usage

    Stress Granules Regulate Double-Stranded RNA-Dependent Protein Kinase Activation through a Complex Containing G3BP1 and Caprin1

    No full text
    UNLABELLED: Stress granules (SGs) are dynamic cytoplasmic repositories containing translationally silenced mRNAs that assemble upon cellular stress. We recently reported that the SG nucleating protein G3BP1 promotes antiviral activity and is essential in double-stranded RNA-dependent protein kinase (PKR) recruitment to stress granules, thereby driving phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we delineate the mechanism for SG-dependent PKR activation. We show that G3BP1 and inactive PKR directly interact with each other, dependent on both the NTF2-like and PXXP domains of G3BP1. The G3BP1-interacting protein Caprin1 also directly interacts with PKR, regulates efficient PKR activation at the stress granule, and is also integral for the release of active PKR into the cytoplasm to engage in substrate recognition. The G3BP1-Caprin1-PKR complex represents a new mode of PKR activation and is important for antiviral activity of G3BP1 and PKR during infection with mengovirus. Our data links stress responses and their resultant SGs with innate immune activation through PKR without a requirement for foreign double-stranded RNA (dsRNA) pattern recognition. IMPORTANCE: Our previous work indicates that stress granules have antiviral activity and mediate innate immunity through functions of G3BP1; however, the mechanistic details of these functions were not resolved. We show that much of the antiviral activity of stress granules is contingent on the function of PKR in a complex with G3BP1 and Caprin1. The PKR-G3BP1-Caprin1 complex undergoes dynamic transitioning within and outside stress granules to accomplish PKR activation and translational repression. This mechanism appears to function distinctly from canonical pattern recognition of double-stranded RNA by PKR. Therefore, this mechanism bridges the stress response with innate immunity, allowing the cell to respond to many cellular stressors and amplify the pathogen pattern recognition systems of innate immunity

    cGAS and STING knockout rescues virus infection of plasmid DNA-transfected cells

    No full text
    It is well known that plasmid DNA transfection, prior to virus infection, negatively affects infection efficiency. Here we show that cytosolic plasmid DNA activates the cGAS/STING signaling pathway, which ultimately leads to the induction of an antiviral state of the cells. Using a transient one-plasmid CRISPR/Cas9 system, we generated cGAS/STING knockout cells and show that these cells can as efficiently be infected after plasmid DNA transfection as non-transfected cells
    corecore