7,523 research outputs found
The impact of heat waves and cold spells on mortality rates in the Dutch population.
We conducted the study described in this paper to investigate the impact of ambient temperature on mortality in the Netherlands during 1979-1997, the impact of heat waves and cold spells on mortality in particular, and the possibility of any heat wave- or cold spell-induced forward displacement of mortality. We found a V-like relationship between mortality and temperature, with an optimum temperature value (e.g., average temperature with lowest mortality rate) of 16.5 degrees C for total mortality, cardiovascular mortality, respiratory mortality, and mortality among those [Greater and equal to] 65 year of age. For mortality due to malignant neoplasms and mortality in the youngest age group, the optimum temperatures were 15.5 degrees C and 14.5 degrees C, respectively. For temperatures above the optimum, mortality increased by 0.47, 1.86, 12.82, and 2.72% for malignant neoplasms, cardiovascular disease, respiratory diseases, and total mortality, respectively, for each degree Celsius increase above the optimum in the preceding month. For temperatures below the optimum, mortality increased 0.22, 1.69, 5.15, and 1.37%, respectively, for each degree Celsius decrease below the optimum in the preceding month. Mortality increased significantly during all of the heat waves studied, and the elderly were most effected by extreme heat. The heat waves led to increases in mortality due to all of the selected causes, especially respiratory mortality. Average total excess mortality during the heat waves studied was 12.1%, or 39.8 deaths/day. The average excess mortality during the cold spells was 12.8% or 46.6 deaths/day, which was mostly attributable to the increase in cardiovascular mortality and mortality among the elderly. The results concerning the forward displacement of deaths due to heat waves were not conclusive. We found no cold-induced forward displacement of deaths
Probiotic treatment of irritable bowel syndrome in children
Treatment of functional bowel disorders of irritable bowel-type (IBS) in children remains a difficult task because of a lack of drugs with low adverse event profile. We here report the results of a treatment study in 203 children (66 boys and 137 girls) age 4 to 18 years (mean: 10.5±4.5 years) with typical IBS symptoms with abdominal pain and either predominant diarrhea (n=50), constipation (n=56), alternating stool frequency (n=28) or unspecific pain (n=69). The average duration of symptoms prior to therapy was 175 days. Most (95%) patients up to age 11 were treated with a daily dose of 10 drops of Symbioflor 2 (SF2) (SymbioPharm, Herborn) (cells and autolysate of 1.5–4.5x107 CFU of bacteria of Escherichia coli type), in the elder children 77% received this dosage, while the remaining received a higher dose up to 30 drops/day. Treatment lasted 43 days on average. Results: All patients tolerated the treatment well and without adverse events. The key IBS symptoms (abdominal pain, stool frequency) as well as the other symptoms (bloating, mucous and blood in stool, need for straining at stools, urge to defecate) improved significantly during treatment. Global assessment of therapy by parents and doctors was altogether positive. In summary these data confirm efficacy and tolerability of this probiotic compound in children and adolescents and supplement published data of probiotic IBS therapy in adults
Maximal Accuracy and Minimal Disturbance in the Arthurs-Kelly Simultaneous Measurement Process
The accuracy of the Arthurs-Kelly model of a simultaneous measurement of
position and momentum is analysed using concepts developed by Braginsky and
Khalili in the context of measurements of a single quantum observable. A
distinction is made between the errors of retrodiction and prediction. It is
shown that the distribution of measured values coincides with the initial state
Husimi function when the retrodictive accuracy is maximised, and that it is
related to the final state anti-Husimi function (the P representation of
quantum optics) when the predictive accuracy is maximised. The disturbance of
the system by the measurement is also discussed. A class of minimally
disturbing measurements is characterised. It is shown that the distribution of
measured values then coincides with one of the smoothed Wigner functions
described by Cartwright.Comment: 12 pages, 0 figures. AMS-Latex. Earlier version replaced with final
published versio
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
SACOC: A spectral-based ACO clustering algorithm
The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, where ACO-based techniques have showed a great potential. At the same time, new clustering techniques that seek the continuity of data, specially focused on spectral-based approaches in opposition to classical centroid-based approaches, have attracted an increasing research interest–an area still under study by ACO clustering techniques. This work presents a hybrid spectral-based ACO clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach combines ACOC with the spectral Laplacian to generate a new search space for the algorithm in order to obtain more promising solutions. The new algorithm, called SACOC, has been compared against well-known algorithms (K-means and Spectral Clustering) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository
Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution
We analyze a large system of globally coupled phase oscillators whose natural
frequencies are bimodally distributed. The dynamics of this system has been the
subject of long-standing interest. In 1984 Kuramoto proposed several
conjectures about its behavior; ten years later, Crawford obtained the first
analytical results by means of a local center manifold calculation.
Nevertheless, many questions have remained open, especially about the
possibility of global bifurcations. Here we derive the system's complete
stability diagram for the special case where the bimodal distribution consists
of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott
and Antonsen, we show that in this case the infinite-dimensional problem
reduces exactly to a flow in four dimensions. Depending on the parameters and
initial conditions, the long-term dynamics evolves to one of three states:
incoherence, where all the oscillators are desynchronized; partial synchrony,
where a macroscopic group of phase-locked oscillators coexists with a sea of
desynchronized ones; and a standing wave state, where two counter-rotating
groups of phase-locked oscillators emerge. Analytical results are presented for
the bifurcation boundaries between these states. Similar results are also
obtained for the case in which the bimodal distribution is given by the sum of
two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
Approximate joint measurement of qubit observables through an Arthur-Kelly type model
We consider joint measurement of two and three unsharp qubit observables
through an Arthur-Kelly type joint measurement model for qubits. We investigate
the effect of initial state of the detectors on the unsharpness of the
measurement as well as the post-measurement state of the system. Particular
emphasis is given on a physical understanding of the POVM to PVM transition in
the model and entanglement between system and detectors.Two approaches for
characterizing the unsharpness of the measurement and the resulting measurement
uncertainty relations are considered.The corresponding measures of unsharpness
are connected for the case where both the measurements are equally unsharp. The
connection between the POVM elements and symmetries of the underlying
Hamiltonian of the measurement interaction is made explicit and used to perform
joint measurement in arbitrary directions. Finally in the case of three
observables we derive a necessary condition for the approximate joint
measurement and use it show the relative freedom available when the observables
are non-orthogonal.Comment: 22 pages; Late
Macroscopic effects in attosecond pulse generation
We examine how the generation and propagation of high-order harmonics in a
partly ionized gas medium affect their strength and synchronization. The
temporal properties of the resulting attosecond pulses generated in long gas
targets can be significantly influenced by macroscopic effects, in particular
by the intensity in the medium and the degree of ionization. Under some
conditions, the use of gas targets longer than the absorption length can lead
to the generation of self-compressed attosecond pulses. We show this effect
experimentally, using long argon-filled gas cells as generating medium.Comment: 5 pages 4 figure
- …