207 research outputs found

    Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes

    Get PDF
    [EN] The main challenge in the hydrogenation of alkynes into (E)- or (Z)-alkenes is to control the selective formation of the alkene, avoiding the over-reduction to the corresponding alkane. In addition, the preparation of recoverable and reusable catalysts is of high interest. In this work, we report novel nickel nanoparticles (Ni NPs) stabilized by three different imidazolium-amidinate ligands (ICy center dot(NCN)-N-(Ar); L1: Ar = p-tol, L2: Ar = p-anisyl and L3: Ar = p-ClC6H4). The as-prepared Ni NPs were fully characterized by (HR)-TEM, XRD, WASX, XPS and VSM. The nanocatalysts are active in the hydrogenation of various substrates. They present a remarkable selectivity in the hydrogenation of alkynes towards (Z)-alkenes, particularly in the hydrogenation of 3-hexyne into (Z)-3-hexene under mild reaction conditions (room temperature, 3% mol Ni and 1 bar H-2). The catalytic behaviour of Ni NPs was influenced by the electron donor/acceptor groups (-Me, -OMe, -Cl) in the N-aryl substituents of the amidinate moiety of the ligands. Due to the magnetic character of the Ni NPs, recycling experiments were successfully performed after decantation in the presence of an external magnet, which allowed us to recover and reuse these catalysts at least 3 times preserving both activity and chemoselectivity.The authors thank CNRS, UPS-Toulouse, INSA, "IDEX/Chaires d'attractivite l'Universite Federale Toulouse Midi-Pyrenees", "Instituto de Tecnologia Quimica" (ITQ; UPV-CSIC), "Juan de la Cierva" programme (IJCI-2016-27966), "Primero Proyectos de Investigacion" (PAID-06-18), "Instituto de Investigaciones Quimicas" (IIQ; CSIC-US), "Ministerio de Ciencia, Innovacion y Universidades" (MCIU/AEI), FEDER funds of the European Union (PGC2018-095768-B-I00) and ERC Advanced Grant (MONACAT 2015-694159) for financial support. We also thank L. Datas for the TEM facilities (UMS Castaing) and S. Cayez for the HRTEM measurements.López-Vinasco, AM.; Martínez-Prieto, LM.; Asensio, JM.; Lecante, P.; Chaudret, B.; Cámpora, J.; Van Leeuwen, PWNM. (2020). Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes. Catalysis Science & Technology. 10(2):342-350. https://doi.org/10.1039/c9cy02172hS342350102Swamy, K. C. K., Reddy, A. S., Sandeep, K., & Kalyani, A. (2018). Advances in chemoselective and/or stereoselective semihydrogenation of alkynes. Tetrahedron Letters, 59(5), 419-429. doi:10.1016/j.tetlet.2017.12.057Lei, J., Su, L., Zeng, K., Chen, T., Qiu, R., Zhou, Y., … Yin, S.-F. (2017). Recent advances of catalytic processes on the transformation of alkynes into functional compounds. Chemical Engineering Science, 171, 404-425. doi:10.1016/j.ces.2017.05.021J. G. de Vries and C. J.Elsevier , The Handbook of Homogeneous Hydrogenation , Wiley-VCH , 2008Albani, D., Shahrokhi, M., Chen, Z., Mitchell, S., Hauert, R., López, N., & Pérez-Ramírez, J. (2018). Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nature Communications, 9(1). doi:10.1038/s41467-018-05052-4Chinchilla, R., & Nájera, C. (2013). Chemicals from Alkynes with Palladium Catalysts. Chemical Reviews, 114(3), 1783-1826. doi:10.1021/cr400133pLópez, N., & Vargas-Fuentes, C. (2012). Promoters in the hydrogenation of alkynes in mixtures: insights from density functional theory. Chem. Commun., 48(10), 1379-1391. doi:10.1039/c1cc14922aCrespo-Quesada, M., Cárdenas-Lizana, F., Dessimoz, A.-L., & Kiwi-Minsker, L. (2012). Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations. ACS Catalysis, 2(8), 1773-1786. doi:10.1021/cs300284rMolnár, Á., Sárkány, A., & Varga, M. (2001). Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. Journal of Molecular Catalysis A: Chemical, 173(1-2), 185-221. doi:10.1016/s1381-1169(01)00150-9Lindlar, H. (1952). Ein neuer Katalysator für selektive Hydrierungen. Helvetica Chimica Acta, 35(2), 446-450. doi:10.1002/hlca.19520350205Delgado, J. A., Benkirane, O., Claver, C., Curulla-Ferré, D., & Godard, C. (2017). Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Transactions, 46(37), 12381-12403. doi:10.1039/c7dt01607gK. Philippot and P.Serp , Nanomaterials in Catalysis , Wiley-VCH , Weinheim , 2013D. Astruc , Nanoparticles and Catalysis , Wiley-VCH , Weinheim , 2008U. Heiz and U.Landman , Nanocatalysis , Springer , Berlin , 2007Vilé, G., Almora-Barrios, N., Mitchell, S., López, N., & Pérez-Ramírez, J. (2014). From the Lindlar Catalyst to Supported Ligand-Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous-Flow Three-Phase Hydrogenation of Acetylenic Compounds. Chemistry - A European Journal, 20(20), 5926-5937. doi:10.1002/chem.201304795Witte, P. T., Boland, S., Kirby, F., van Maanen, R., Bleeker, B. F., de Winter, D. A. M., … Berben, P. H. (2012). NanoSelect Pd Catalysts: What Causes the High Selectivity of These Supported Colloidal Catalysts in Alkyne Semi-Hydrogenation? ChemCatChem, 5(2), 582-587. doi:10.1002/cctc.201200460La Sorella, G., Sperni, L., Canton, P., Coletti, L., Fabris, F., Strukul, G., & Scarso, A. (2018). Selective Hydrogenations and Dechlorinations in Water Mediated by Anionic Surfactant-Stabilized Pd Nanoparticles. The Journal of Organic Chemistry, 83(14), 7438-7446. doi:10.1021/acs.joc.8b00314Nikoshvili, L. Z., Bykov, A. V., Khudyakova, T. E., LaGrange, T., Héroguel, F., Luterbacher, J. S., … Kiwi-Minsker, L. (2017). Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols. Industrial & Engineering Chemistry Research, 56(45), 13219-13227. doi:10.1021/acs.iecr.7b01612Reina, A., Favier, I., Pradel, C., & Gómez, M. (2018). Stable Zero-Valent Nickel Nanoparticles in Glycerol: Synthesis and Applications in Selective Hydrogenations. Advanced Synthesis & Catalysis, 360(18), 3544-3552. doi:10.1002/adsc.201800786De los Bernardos, M. D., Pérez-Rodríguez, S., Gual, A., Claver, C., & Godard, C. (2017). Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chemical Communications, 53(56), 7894-7897. doi:10.1039/c7cc01779kWen, X., Shi, X., Qiao, X., Wu, Z., & Bai, G. (2017). Ligand-free nickel-catalyzed semihydrogenation of alkynes with sodium borohydride: a highly efficient and selective process for cis-alkenes under ambient conditions. Chemical Communications, 53(39), 5372-5375. doi:10.1039/c7cc02140bKonnerth, H., & Prechtl, M. H. G. (2016). Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions. Chemical Communications, 52(58), 9129-9132. doi:10.1039/c6cc00499gCarenco, S., Leyva-Pérez, A., Concepción, P., Boissière, C., Mézailles, N., Sanchez, C., & Corma, A. (2012). Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today, 7(1), 21-28. doi:10.1016/j.nantod.2011.12.003Polshettiwar, V., Baruwati, B., & Varma, R. S. (2009). Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem., 11(1), 127-131. doi:10.1039/b815058cAlonso, F., Osante, I., & Yus, M. (2007). Highly selective hydrogenation of multiple carbon–carbon bonds promoted by nickel(0) nanoparticles. Tetrahedron, 63(1), 93-102. doi:10.1016/j.tet.2006.10.043Rossi, L. M., Costa, N. J. S., Silva, F. P., & Wojcieszak, R. (2014). Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chemistry, 16(6), 2906. doi:10.1039/c4gc00164hMartínez-Prieto, L. M., & Chaudret, B. (2018). Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Accounts of Chemical Research, 51(2), 376-384. doi:10.1021/acs.accounts.7b00378Martínez-Prieto, L. M., Baquero, E. A., Pieters, G., Flores, J. C., de Jesús, E., Nayral, C., … Chaudret, B. (2017). Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chemical Communications, 53(43), 5850-5853. doi:10.1039/c7cc02445bMartínez-Prieto, L. M., Rakers, L., López-Vinasco, A. M., Cano, I., Coppel, Y., Philippot, K., … van Leeuwen, P. W. N. M. (2017). Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chemistry - A European Journal, 23(52), 12779-12786. doi:10.1002/chem.201702288Asensio, J. M., Tricard, S., Coppel, Y., Andrés, R., Chaudret, B., & de Jesús, E. (2016). Knight Shift in 13 C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angewandte Chemie International Edition, 56(3), 865-869. doi:10.1002/anie.201610251Martínez-Prieto, L. M., Urbaneja, C., Palma, P., Cámpora, J., Philippot, K., & Chaudret, B. (2015). A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles. Chemical Communications, 51(22), 4647-4650. doi:10.1039/c5cc00211gMartínez-Prieto, L. M., Cano, I., Márquez, A., Baquero, E. A., Tricard, S., Cusinato, L., … van Leeuwen, P. W. N. M. (2017). Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chemical Science, 8(4), 2931-2941. doi:10.1039/c6sc05551fBiju, V., & Abdul Khadar, M. (2002). Journal of Nanoparticle Research, 4(3), 247-253. doi:10.1023/a:1019949805751Van Veenendaal, M. A., & Sawatzky, G. A. (1993). Nonlocal screening effects in 2px-ray photoemission spectroscopy core-level line shapes of transition metal compounds. Physical Review Letters, 70(16), 2459-2462. doi:10.1103/physrevlett.70.2459Vedrine, J. C., Hollinger, G., & Tran Minh Duc. (1978). Investigations of antigorite and nickel supported catalysts by x-ray photoelectron spectroscopy. The Journal of Physical Chemistry, 82(13), 1515-1520. doi:10.1021/j100502a011Delgado, D., Sanchís, R., Cecilia, J. A., Rodríguez-Castellón, E., Caballero, A., Solsona, B., & Nieto, J. M. L. (2019). Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today, 333, 10-16. doi:10.1016/j.cattod.2018.07.010D. Jiles , Introduction to Magnetism and Magnetic Materials , Chapman and Hall , London , 1991Kaiser, R., & Miskolczy, G. (1970). Magnetic Properties of Stable Dispersions of Subdomain Magnetite Particles. Journal of Applied Physics, 41(3), 1064-1072. doi:10.1063/1.1658812Billas, I. M. L., Châtelain, A., & de Heer, W. A. (1994). Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters. Science, 265(5179), 1682-1684. doi:10.1126/science.265.5179.1682Cordente, N., Amiens, C., Chaudret, B., Respaud, M., Senocq, F., & Casanove, M.-J. (2003). Chemisorption on nickel nanoparticles of various shapes: Influence on magnetism. Journal of Applied Physics, 94(10), 6358-6365. doi:10.1063/1.1621081Nogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-

    Deterministic and time resolved thermo-magnetic switching in a nickel nanowire

    Get PDF
    [EN]Heating a ferromagnetic material is often perceived as detrimental for most applications. This is indeed the case for modern nano-scaled spintronic devices which are operated solely (at least ideally) by an electric current. Heat is a by-product of the current-driven operation and it deteriorates many functionalities of the device. A large scientific and technological effort is devoted these days to avoid heat in modern magnetic nano devices. Here we show that heat can be used to provide an additional and useful degree of freedom in the control of the local magnetization at the nanoscale. In a ferromagnetic nanowire, temperature is used to induce a magnetic switching through a perfectly deterministic mechanism. The nucleation of the magnetic domain walls that triggers the switching can be achieved at a field considerably smaller than the nucleation field and, importantly, the exact moment of the magnetic switching can be pre-determined with nanosecond precision by controlling the power delivered locally to the switching area. With the help of micromagnetic simulations and a theoretical model, we provide an accurate explanation of how this deterministic thermo-magnetic switching operates. The concepts described in this work may lead to an increased functionality in magnetic nano-devices based on magnetic domain walls.MAT2017-87072-C4-1-P,MAT2017-87072-C4-4-P and MAT2017-87072-C4-3-P from the Spanish government SA299P18 from the Junta de Castilla y Leon POCI-01-0145-FEDER-028676 from Portuguese FCT COMPETE 2020 (FEDER)

    Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis

    Full text link
    [EN] Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 degrees C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.The authors thank the Instituto de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de València (UPV) for the facilities and Severo Ochoa programe (SEV-2016-0683), "Juan de la Cierva" by MINECO (IJCI-2016-27966), and Primero Proyectos de Investigación PAID-06-18 (SP20180088) for financial support. The authors acknowledge ERC Advanced Grants (MONACAT-2015-694159 and SynCatMatch-2014671093). We also thank the Electron Microscopy Service of the UPV for TEM facilities.Martínez-Prieto, LM.; Marbaix, J.; Asensio, JM.; Cerezo-Navarrete, C.; Fazzini, P.; Soulantica, K.; Chaudret, B.... (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials. 3(7):7076-7087. https://doi.org/10.1021/acsanm.0c01392S7076708737Ceylan, S., Friese, C., Lammel, C., Mazac, K., & Kirschning, A. (2008). Inductive Heating for Organic Synthesis by Using Functionalized Magnetic Nanoparticles Inside Microreactors. Angewandte Chemie International Edition, 47(46), 8950-8953. doi:10.1002/anie.200801474Ceylan, S., Coutable, L., Wegner, J., & Kirschning, A. (2011). Inductive Heating with Magnetic Materials inside Flow Reactors. Chemistry - A European Journal, 17(6), 1884-1893. doi:10.1002/chem.201002291Houlding, T. K., Gao, P., Degirmenci, V., Tchabanenko, K., & Rebrov, E. V. (2015). Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering: B, 193, 175-180. doi:10.1016/j.mseb.2014.12.011Asensio, J. M., Miguel, A. B., Fazzini, P., van Leeuwen, P. W. N. M., & Chaudret, B. (2019). Hydrodeoxygenation Using Magnetic Induction: High‐Temperature Heterogeneous Catalysis in Solution. Angewandte Chemie International Edition, 58(33), 11306-11310. doi:10.1002/anie.201904366Liu, Y., Gao, P., Cherkasov, N., & Rebrov, E. V. (2016). Direct amide synthesis over core–shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor. RSC Advances, 6(103), 100997-101007. doi:10.1039/c6ra22659kLiu, Y., Cherkasov, N., Gao, P., Fernández, J., Lees, M. R., & Rebrov, E. V. (2017). The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 355, 120-130. doi:10.1016/j.jcat.2017.09.010Meffre, A., Mehdaoui, B., Connord, V., Carrey, J., Fazzini, P. F., Lachaize, S., … Chaudret, B. (2015). Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Letters, 15(5), 3241-3248. doi:10.1021/acs.nanolett.5b00446Bordet, A., Lacroix, L.-M., Fazzini, P.-F., Carrey, J., Soulantica, K., & Chaudret, B. (2016). Magnetically Induced Continuous CO2Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angewandte Chemie International Edition, 55(51), 15894-15898. doi:10.1002/anie.201609477Mortensen, P. M., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., & Østberg, M. (2017). Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Industrial & Engineering Chemistry Research, 56(47), 14006-14013. doi:10.1021/acs.iecr.7b02331Marbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444Vinum, M. G., Almind, M. R., Engbæk, J. S., Vendelbo, S. B., Hansen, M. F., Frandsen, C., … Mortensen, P. M. (2018). Dual‐Function Cobalt–Nickel Nanoparticles Tailored for High‐Temperature Induction‐Heated Steam Methane Reforming. Angewandte Chemie International Edition, 57(33), 10569-10573. doi:10.1002/anie.201804832Kale, S. S., Asensio, J. M., Estrader, M., Werner, M., Bordet, A., Yi, D., … Chaudret, B. (2019). Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catalysis Science & Technology, 9(10), 2601-2607. doi:10.1039/c9cy00437hVarsano, F., Bellusci, M., La Barbera, A., Petrecca, M., Albino, M., & Sangregorio, C. (2019). Dry reforming of methane powered by magnetic induction. International Journal of Hydrogen Energy, 44(38), 21037-21044. doi:10.1016/j.ijhydene.2019.02.055Wang, W., Duong-Viet, C., Xu, Z., Ba, H., Tuci, G., Giambastiani, G., … Pham-Huu, C. (2020). CO2 methanation under dynamic operational mode using nickel nanoparticles decorated carbon felt (Ni/OCF) combined with inductive heating. Catalysis Today, 357, 214-220. doi:10.1016/j.cattod.2019.02.050Benkowsky, G. Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißn: Grundlagen und praktische Anleitungen für Induktionserwärmungsverfahren, insbesondere auf dem Gebiet der Hochfrequenzerwärmung, 5th ed. Verlag Technik: Berlin, 1990; p 12.Carrey, J., Mehdaoui, B., & Respaud, M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of Applied Physics, 109(8), 083921. doi:10.1063/1.3551582Khodakov, A. Y., Chu, W., & Fongarland, P. (2007). Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 107(5), 1692-1744. doi:10.1021/cr050972vLiu, J., Guo, Z., Childers, D., Schweitzer, N., Marshall, C. L., Klie, R. F., … Meyer, R. J. (2014). Correlating the degree of metal–promoter interaction to ethanol selectivity over MnRh/CNTs CO hydrogenation catalysts. Journal of Catalysis, 313, 149-158. doi:10.1016/j.jcat.2014.03.002Ghaib, K., Nitz, K., & Ben-Fares, F.-Z. (2016). Chemical Methanation of CO2: A Review. ChemBioEng Reviews, 3(6), 266-275. doi:10.1002/cben.201600022Cored, J., García-Ortiz, A., Iborra, S., Climent, M. J., Liu, L., Chuang, C.-H., … Corma, A. (2019). Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO2 to Methane. Journal of the American Chemical Society, 141(49), 19304-19311. doi:10.1021/jacs.9b07088Schiermeier, Q. (2013). Location may stymie wind and solar power benefits. Nature. doi:10.1038/nature.2013.13258Wilhelm, D. ., Simbeck, D. ., Karp, A. ., & Dickenson, R. . (2001). Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology, 71(1-3), 139-148. doi:10.1016/s0378-3820(01)00140-0Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E., & Weckhuysen, B. M. (2014). Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chemical Reviews, 114(20), 10613-10653. doi:10.1021/cr5002436Siahvashi, A., Chesterfield, D., & Adesina, A. A. (2013). Propane CO2 (dry) reforming over bimetallic Mo–Ni/Al2O3 catalyst. Chemical Engineering Science, 93, 313-325. doi:10.1016/j.ces.2013.02.003Lee, M.-H., Nagaraja, B. M., Lee, K. Y., & Jung, K.-D. (2014). Dehydrogenation of alkane to light olefin over PtSn/θ-Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 232, 53-62. doi:10.1016/j.cattod.2013.10.011Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757Liu, L., Zakharov, D. N., Arenal, R., Concepcion, P., Stach, E. A., & Corma, A. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nature Communications, 9(1). doi:10.1038/s41467-018-03012-6Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006Fu, T., Wang, M., Cai, W., Cui, Y., Gao, F., Peng, L., … Ding, W. (2014). Acid-Resistant Catalysis without Use of Noble Metals: Carbon Nitride with Underlying Nickel. ACS Catalysis, 4(8), 2536-2543. doi:10.1021/cs500523kGarnero, C., Lepesant, M., Garcia-Marcelot, C., Shin, Y., Meny, C., Farger, P., … Chaudret, B. (2019). Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material. Nano Letters, 19(2), 1379-1386. doi:10.1021/acs.nanolett.8b05083Lepesant, M., Bardet, B., Lacroix, L.-M., Fau, P., Garnero, C., Chaudret, B., … Gautier, G. (2018). Impregnation of High-Magnetization FeCo Nanoparticles in Mesoporous Silicon: An Experimental Approach. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00609Deng, J., Ren, P., Deng, D., & Bao, X. (2015). Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 54(7), 2100-2104. doi:10.1002/anie.201409524Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1-2), 47-57. doi:10.1016/j.ssc.2007.03.052Hadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007Saxena, P., & Varshney, D. (2017). Effect of d-block element substitution on structural and dielectric properties on iron cobaltite. Journal of Alloys and Compounds, 705, 320-326. doi:10.1016/j.jallcom.2017.02.120Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. doi:10.1016/j.apsusc.2010.10.051Cullity, B. D., & Graham, C. D. (2008). Introduction to Magnetic Materials. doi:10.1002/9780470386323Zhang, Y., Zhu, Y., Wang, K., Li, D., Wang, D., Ding, F., … Zhang, Z. (2018). Controlled synthesis of Co2C nanochains using cobalt laurate as precursor: Structure, growth mechanism and magnetic properties. Journal of Magnetism and Magnetic Materials, 456, 71-77. doi:10.1016/j.jmmm.2018.02.014Desvaux, C., Amiens, C., Fejes, P., Renaud, P., Respaud, M., Lecante, P., … Chaudret, B. (2005). Multimillimetre-large superlattices of air-stable iron–cobalt nanoparticles. Nature Materials, 4(10), 750-753. doi:10.1038/nmat1480Desvaux, C., Dumestre, F., Amiens, C., Respaud, M., Lecante, P., Snoeck, E., … Chaudret, B. (2009). FeCo nanoparticles from an organometallic approach: synthesis, organisation and physical properties. Journal of Materials Chemistry, 19(20), 3268. doi:10.1039/b816509bNogués, J., & Schuller, I. K. (1999). Exchange bias. Journal of Magnetism and Magnetic Materials, 192(2), 203-232. doi:10.1016/s0304-8853(98)00266-2Saville, S. L., Qi, B., Baker, J., Stone, R., Camley, R. E., Livesey, K. L., … Thompson Mefford, O. (2014). The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. Journal of Colloid and Interface Science, 424, 141-151. doi:10.1016/j.jcis.2014.03.007Mehdaoui, B., Tan, R. P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B., & Respaud, M. (2013). Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Physical Review B, 87(17). doi:10.1103/physrevb.87.174419Mehdaoui, B., Meffre, A., Lacroix, L.-M., Carrey, J., Lachaize, S., Respaud, M., … Chaudret, B. (2010). Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime. Journal of Applied Physics, 107(9), 09A324. doi:10.1063/1.3348795Serantes, D., Simeonidis, K., Angelakeris, M., Chubykalo-Fesenko, O., Marciello, M., Morales, M. del P., … Martinez-Boubeta, C. (2014). Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C, 118(11), 5927-5934. doi:10.1021/jp410717mAsensio, J. M., Marbaix, J., Mille, N., Lacroix, L.-M., Soulantica, K., Fazzini, P.-F., … Chaudret, B. (2019). To heat or not to heat: a study of the performances of iron carbide nanoparticles in magnetic heating. Nanoscale, 11(12), 5402-5411. doi:10.1039/c8nr10235jXiong, H., Lin, S., Goetze, J., Pletcher, P., Guo, H., Kovarik, L., … Datye, A. K. (2017). Thermally Stable and Regenerable Platinum–Tin Clusters for Propane Dehydrogenation Prepared by Atom Trapping on Ceria. Angewandte Chemie International Edition, 56(31), 8986-8991. doi:10.1002/anie.201701115Zhu, Y., An, Z., Song, H., Xiang, X., Yan, W., & He, J. (2017). Lattice-Confined Sn (IV/II) Stabilizing Raft-Like Pt Clusters: High Selectivity and Durability in Propane Dehydrogenation. ACS Catalysis, 7(10), 6973-6978. doi:10.1021/acscatal.7b02264Hauser, A. W., Gomes, J., Bajdich, M., Head-Gordon, M., & Bell, A. T. (2013). Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes. Physical Chemistry Chemical Physics, 15(47), 20727. doi:10.1039/c3cp53796jBursavich, J., Abu-Laban, M., Muley, P. D., Boldor, D., & Hayes, D. J. (2019). Thermal performance and surface analysis of steel-supported platinum nanoparticles designed for bio-oil catalytic upconversion during radio frequency-based inductive heating. Energy Conversion and Management, 183, 689-697. doi:10.1016/j.enconman.2019.01.025Pashchenko, D. (2017). Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation. International Journal of Hydrogen Energy, 42(22), 14926-14935. doi:10.1016/j.ijhydene.2017.04.284Ojeda, M., Nabar, R., Nilekar, A. U., Ishikawa, A., Mavrikakis, M., & Iglesia, E. (2010). CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 272(2), 287-297. doi:10.1016/j.jcat.2010.04.012Gao, J., Wang, Y., Ping, Y., Hu, D., Xu, G., Gu, F., & Su, F. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2(6), 2358. doi:10.1039/c2ra00632dZangeneh, F. T., Taeb, A., Gholivand, K., & Sahebdelfar, S. (2015). Thermodynamic Equilibrium Analysis of Propane Dehydrogenation with Carbon Dioxide and Side Reactions. Chemical Engineering Communications, 203(4), 557-565. doi:10.1080/00986445.2015.1017638Wang, X., Wang, N., Zhao, J., & Wang, L. (2010). Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production. International Journal of Hydrogen Energy, 35(23), 12800-12807. doi:10.1016/j.ijhydene.2010.08.132Martínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040Soulantica, K., Maisonnat, A., Fromen, M.-C., Casanove, M.-J., & Chaudret, B. (2003). Spontaneous Formation of Ordered 3D Superlattices of Nanocrystals from Polydisperse Colloidal Solutions. Angewandte Chemie International Edition, 42(17), 1945-1949. doi:10.1002/anie.20025048

    Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity

    Get PDF
    8 páginas, 5 figuras.-- OCIS codes: (160.4760) Optical properties; (230.5298) Photonic crystals; (230.5590) Quantumwell, -wire and –dot devices.We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.This work has been supported by research contracts of the Spanish Ministry of Education Grants MAT2008-01555/NAN, Consolider CSD 2006-19 and Naninpho-QD TEC2008-06756-C03- 01, and the Community of Madrid Grant Grant CAM (S2009/ESP-1503).Peer reviewe

    Sequential Loading of Cohesin Subunits during the First Meiotic Prophase of Grasshoppers

    Get PDF
    A previous version of this article appeared as an Early Online Release on January 2, 2007 (doi:10.1371/journal.pgen.0030028.eor).The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3) appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21) (sister chromatid cohesion protein 1, SCC1) and stromal antigen protein 1 (SA1) (sister chromatid cohesion protein 3, SCC3) are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21 and SA1 subunits at zygotene to reinforce and stabilize the bivalent structure. Therefore, we speculate that more than one cohesin complex participates in the sister chromatid cohesion at prophase I.This work was supported by grants BFU2005–05668-C03–01, BFU2006–06655, BFU2005–01266, BFU2005–02431, and BFU2006–04406 from Ministerio de Educación y Ciencia, España, and grants 1001160016 and 11/BCB/013 from Universidad Autónoma de Madrid and Comunidad de Madrid. The Department of Immunology and Oncology was founded and is supported by the Spanish Council for Scientific Research (CSIC).Peer reviewe

    Validation of a simple method for the interpretation of uterine cytology in cows

    Get PDF
    One of the main drawbacks of using endometrial cytology in cows is the time required for sample collection and interpretation. It is recommended to count a large number of polymorphonuclear neutrophils (PMN) and to calculate their overall percentage. However, since counting a large number of cells is a laborious method, it would be preferable to simplify the analysis by counting the number of PMN in few microscopic fields. Therefore, the aim of this study was to assess whether a simple test, based on calculating the average number of PMN in 10 fields at 1000×, could be a reliable technique for the diagnosis of endometritis. Two hundred and sixty endometrial samples were taken from Holstein cows at different postpartum stages using an adapted cytobrush. Smears obtained were air-dried for fixing and stained with a Romanowsky-type procedure. To evaluate the counting method, the percentage of PMN in 150 cells was calculated as well as the average number of PMN in 10 fields at 1000×. Receiver operating characteristic (ROC) curves was constructed to evaluate both methods, the percentage of PMN (used as reference) and the average number of PMN. It was observed that the area under the curve is (regardless of cut-off used) higher than 0.99 and the correspondence between both methods were 1.58 PMN/field for the cut-off value of 15% and 2.40 PMN/field for the cut-off value of 20%. These results show that this simple method could be used to determine the percentage of PMN in endometrial cytological samples and to diagnose endometritis in cowsSupported by the Xunta de Galicia (Galician Plan for Research and Technological Development; Grant No. PGIDIT07MRU002E) and the Friesian Federation of Galician, A Coruna, SpainS

    Reuse Detector: improving the management of STT-RAM SLLCs

    Get PDF
    Various constraints of Static Random Access Memory (SRAM) are leading to consider new memory technologies as candidates for building on-chip shared last-level caches (SLLCs). Spin-Transfer Torque RAM (STT-RAM) is currently postulated as the prime contender due to its better energy efficiency, smaller die footprint and higher scalability. However, STT-RAM also exhibits some drawbacks, like slow and energy-hungry write operations that need to be mitigated before it can be used in SLLCs for the next generation of computers. In this work, we address these shortcomings by leveraging a new management mechanism for STT-RAM SLLCs. This approach is based on the previous observation that although the stream of references arriving at the SLLC of a Chip MultiProcessor (CMP) exhibits limited temporal locality, it does exhibit reuse locality, i.e. those blocks referenced several times manifest high probability of forthcoming reuse. As such, conventional STT-RAM SLLC management mechanisms, mainly focused on exploiting temporal locality, result in low efficient behavior. In this paper, we employ a cache management mechanism that selects the contents of the SLLC aimed to exploit reuse locality instead of temporal locality. Specifically, our proposal consists in the inclusion of a Reuse Detector (RD) between private cache levels and the STT-RAM SLLC. Its mission is to detect blocks that do not exhibit reuse, in order to avoid their insertion in the SLLC, hence reducing the number of write operations and the energy consumption in the STT-RAM. Our evaluation, using multiprogrammed workloads in quad-core, eight-core and 16-core systems, reveals that our scheme reports on average, energy reductions in the SLLC in the range of 37–30%, additional energy savings in the main memory in the range of 6–8% and performance improvements of 3% (quad-core), 7% (eight-core) and 14% (16-core) compared with an STT-RAM SLLC baseline where no RD is employed. More importantly, our approach outperforms DASCA, the state-of-the-art STT-RAM SLLC management, reporting—depending on the specific scenario and the kind of applications used—SLLC energy savings in the range of 4–11% higher than those of DASCA, delivering higher performance in the range of 1.5–14% and additional improvements in DRAM energy consumption in the range of 2–9% higher than DASCA.Peer ReviewedPostprint (author's final draft
    corecore