792 research outputs found

    Development of a calibration satellite for a CMB telescope flying in formation about L2 libration point

    Get PDF
    Trabajo presentado a la 8th European Conference for aeronautics and aerospace sciences (EUCASS), celebrada en Madrid (España) del 1 al 4 de julio de 2019.The new generation of cosmic microwave background (CMB) telescopes have reached unprecedented levels of sensitivity. These telescopes measure several cosmological parameters with different levels of accuracy. In particular, considerable effort has been made to measure the B-mode polarization, which is related to the inflationary process of the universe. The power spectrum of this signal is about four orders of magnitude fainter than the CMB temperature power spectrum. Due to the signal weakness, the instruments must be subjected to calibration processes before and after launching. Additionally, data from the same sky area is gathered repeatedly to mitigate during data analysis the systematic errors induced by instruments. Celestial sources are often used as an external reference for calibration after launch, but these sources are not perfectly characterized. In this paper we study the concept of using a calibration satellite (CalSat) flying in formation with a CMB telescope in an orbit located at the second Lagrange point (L2). The CalSat is conceived as a micro satellite (10-100 kg) and serves as a perfectly known source of a reference signal to reduce the polarization angle measurement uncertainty. According to the scanning law followed by the telescope, the influence of the relative position between the spacecrafts in the calibration process is studied. The relative motion of the spacecrafts is considered with a simplified dynamic model. Based on the mission requirements, the different subsystems are sized and a preliminary design to evaluate the feasibility is obtained. The design has been carried out under the principle of reducing at minimum the impact on the telescope architecture. It would require to be launched along with the telescope to reach L2 at the same time and being able to communicate with the telescope. This new calibration element could have a huge impact on the performance of this kind of missions, providing a significant improvement in the measurements accuracy without requiring new and costly technological developments.The authors would like to thank Spanish Ministry for Economy and Competitiveness (currently Ministry of Science,innovation and Universities) for the financial support provided under the projects with references ESP2017-92135-EXP all co-financed with EU FEDER funds

    Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model

    Full text link
    [EN] Railway curve squeal is an intense tonal and annoying type of noise commonly attributed to self-excited vibrations during curving. The mechanisms for its generation remain unclear and it is still a subject of discussion among researchers. Most of them have considered the falling behaviour of the friction coefficient with the slip velocity essential for reenergising the system. Recently, some authors have found that squeal can also appear even for constant friction coefficient through the wheel modal coupling between the normal and tangential directions caused by the wheel/rail contact. This paper particularly evaluates whether the latter mechanism is sufficient to find squeal in curving conditions. The introduction of flexibility in the railway subsystems is required to widen the domain to the high-frequency range in which squeal occurs. One single flexible and rotatory wheelset is considered and suitable forces are prescribed at the primary suspension seats in the current investigation. The rails are modelled through the Moving Element Method (MEM), permitting to extend the range of validity of beam models usually utilised in the literature. This work extends the formulation to rails supported by a viscoelastic Winkler bedding. Both wheelset and track models are coupled by means of a non-linear and unsteady wheel/rail contact model based on Kalker¿s Variational Theory. Simulation results for different track curvatures and friction coefficients are presented and discussed, showing tonal peaks in the tangential contact forces of the inner wheel. These results can be associated with squeal according to the characterisation of this phenomenon, indicating that squeal can be found in curving conditions using advanced dynamic interaction models even with constant friction coefficient.The authors gratefully acknowledge the financial support of Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (project TRA2017-84701-R), as well as Generalitat Valenciana (project Prometeo/2016/007) and European Commission through the project "RUN2Rail - Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles" (Horizon 2020 Shift2Rail JU call 2017, grant number 777564).Giner Navarro, J.; Martínez Casas, J.; Denia, FD.; Baeza González, LM. (2018). Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model. Journal of Sound and Vibration. 431:177-191. https://doi.org/10.1016/j.jsv.2018.06.004S17719143

    Railway rolling noise mitigation through optimal track design

    Full text link
    [EN] The main goal of the present work lies in the identification of the railway track properties that influence acoustic radiation, as well as in the analysis of these properties for the reduction of sound levels. This is achieved through a dynamic model of the railway wheel and track that allows the study of rolling noise, produced as a result of the wheel/rail interaction. Once the vibrational response of the railway components is determined, the sound power radiated by them is evaluated. The influence of the track properties on the sound radiation is determined by analysing the acoustic power results of different track configurations. From the results obtained, a number of guidelines are presented for noise mitigation of the involved railway elements. Between the worst and the best track design, there are differences of approximately 7.4 dB(A) in the radiation considering the wheel, rail and sleeper noise.The authors gratefully acknowledge the financial support of Agencia Estatal de Investigación and European Regional Development Fund (grant FPU18/03999, project TRA2017-84701-R and project PID2020-112886RA-I00)Andrés Ruiz, V.; Martínez Casas, J.; Carballeira Morado, J.; Denia Guzmán, F.; Thompson, DJ. (2022). Railway rolling noise mitigation through optimal track design. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 313-319. https://doi.org/10.4995/YIC2021.2021.12583OCS31331

    Magneto--Acoustic Energetics Study of the Seismically Active Flare of 15 February 2011

    Full text link
    Multi--wavelength studies of energetic solar flares with seismic emissions have revealed interesting common features between them. We studied the first GOES X--class flare of the 24th solar cycle, as detected by the Solar Dynamics Observatory (SDO). For context, seismic activity from this flare (SOL2011-02-15T01:55-X2.2, in NOAA AR 11158) has been reported in the literature (Kosovichev, 2011; Zharkov et al., 2011). Based on Dopplergram data from the Helioseismic and Magnetic Imager (HMI), we applied standard methods of local helioseismology in order to identify the seismic sources in this event. RHESSI hard X-ray data are used to check the correlation between the location of the seismic sources and the particle precipitation sites in during the flare. Using HMI magnetogram data, the temporal profile of fluctuations in the photospheric line-of-sight magnetic field is used to estimate the magnetic field change in the region where the seismic signal was observed. This leads to an estimate of the work done by the Lorentz-force transient on the photosphere of the source region. In this instance this is found to be a significant fraction of the acoustic energy in the attendant seismic emission, suggesting that Lorentz forces can contribute significantly to the generation of sunquakes. However, there are regions in which the signature of the Lorentz-force is much stronger, but from which no significant acoustic emission emanates.Comment: Submitted to Solar Physic

    Evaluation of the scenic value of 100 beaches in Cuba: Implications for coastal tourism management

    Get PDF
    This paper provides coastal scenic values of 100 sites along coastal Cuba by the use of a weighted, fuzzy logic, based checklist containing 26 physical/human factors. Sites were categorized into five classes from Class I, top grade scenery, to Class V, poor scenery. Seven beaches belonged to Class I, e.g. rural areas with a low impact of human activities and high scores of natural parameters. Most Class II beaches were located at international resort areas in cays having white coral sand beaches, turquoise water and vigorous vegetation together with a low impact of tourist developments because of appropriate location and design. Classes III, IV and V presented a wide distribution and their lower scores were linked to a poor environmental setting. Results allow for improvements to beach management plans to be formulated for current international tourist destinations (in cays) and other potentially attractive coastal areas at new developing tourist destinations

    Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct

    Get PDF
    The first example of an ammonium derivative that causes a specific modification of the active site of type I dehydroquinase (DHQ1), a dehydratase enzyme that is a promising target for antivirulence drug discovery, is described. The resolution at 1.35 Ă… of the crystal structure of DHQ1 from Salmonella typhi chemically modified by this ammonium derivative revealed that the ligand is covalently attached to the essential Lys170 through the formation of an amine. The detection by mass spectroscopy of the reaction intermediates, in conjunction with the results of molecular dynamics simulations, allowed us to explain the inhibition mechanism and the experimentally observed differences between S. typhi and Staphylococcus aureus enzymes. The results presented here reveal that the replacement of Phe225 in St-DHQ1 by Tyr214 in Sa-DHQ1 and its hydrogen bonding interaction with the conserved water molecule observed in several crystal structures protects the amino adduct against further dehydration/aromatization reactions. In contrast, for the St-DHQ1 enzyme, the carboxylate group of Asp114, with the assistance of this water molecule, would trigger the formation of a Schiff base that can undergo further dehydration reactions until full aromatization of the cyclohexane ring is achieved. Moreover, in vitro antivirulence studies showed that the reported compound is able to reduce the ability of Salmonella Enteritidis to kill A459 respiratory cells. These studies have identified a good scaffold for the design of irreversible inhibitors that can be used as drugs and has opened up new opportunities for the development of novel antivirulence agents by targeting the DHQ1 enzymeFinancial support from the Spanish Ministry of Science and Innovation (SAF2013-42899-R), Xunta de Galicia (GRC2013-041), and the European Regional Development Fund (ERDF) is gratefully acknowledged. E.L. thanks the Xunta de Galicia for his postdoctoral fellowship. A.B. thanks the Miguel Servet Programme ISCIII-FEDER (CP13/00226) and the ISCIIIGeneral Subdirection of Assesment and Promotion of the Research (PI14/00059) for financial supportS

    Scavenging Behaviour of Red Deer Cervus elaphus Linnaeus, 1758 (Artiodactyla: Cervidae) in Eastern Spain

    Get PDF
    A male red deer was repeatedly observed scavenging in eastern Spain. This is the first time this behaviour of the red deer being recorded by means of camera traps. Scavenging behaviour of herbivores may have implications for wildlife biologists and managers

    The separation between the 5′-3′ ends in long RNA molecules is short and nearly constant

    Get PDF
    "RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5 ' and 3 ' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in finetuning for translation and gene expression regulation.
    • …
    corecore