50 research outputs found

    Spatio-temporal variability of droughts in Bolivia: 1955-2012

    Get PDF
    In this study, the spatio-temporal variability and trends of droughts across Bolivia between 1955 and 2012 were investigated using two climate drought indices: the Standardized Precipitation Index (SPI), which is based on precipitation data, and the Standardized Precipitation Evapotranspiration Index (SPEI), which is based on the difference between the precipitation and the reference evapotranspiration (ETo). We found that the average drought conditions across the country showed a temporal behaviour mainly characterized by decadal variations. The spatial pattern of drought evolution showed marked differences between the Amazonian region and the Bolivian Altiplano. Both regions showed different drought periods, a lower frequency of drought variability in the Amazon region and trends towards drier conditions in the Altiplano, mainly due to a higher atmospheric water demand as a consequence of increased ETo. We also showed that inclusion of ETo, obtained from maximum and minimum temperature records, increased the spatial heterogeneity of the drought evolution in relation to the evolution observed when only precipitation droughts were considered. The SPEI, the calculation of which includes precipitation and ETo, indicated intensification in drought severity in the last years analysed relative to the pattern found when precipitation droughts alone were considered, and also indicated an increase in the magnitude and duration of drought events. The potential for increasing drought conditions under various climate change scenarios is discussed. © 2015 Royal Meteorological Society.This work has been supported by research projects I-COOP H2O 2013CD0006: ‘Test multisectorial y actividades demostrativa sobre el potencial desarrollo de sistemas de monitorizaciĂłn de sequĂ­as en tiempo real en la regiĂłn del oeste de SudamĂ©rica’ financed by the Spanish National Research Council (CSIC), CGL2011-27574-CO2-02 financed by the Spanish Commission of Science and Technology and FEDER, ‘Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)’ financed by the LIFE programme of the European Commission, C.A.-M. received a postdoctoral fellowship # JCI-2011-10263. A.S.-L. is supported by the ‘Secretaria per a Universitats i Recerca del Departament d'Economia i Coneixement, de la Generalitat de Catalunya i del programa Cofund de les Accions Marie Curie del 7Ăš Programa marc d'R + D de la UniĂł Europea’ (2011 BP-B 00078) and the postdoctoral fellowship # JCI-2012-12508.Peer Reviewe

    Challenges of viticulture adaptation to global change: tackling the issue from the roots

    Get PDF
    Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental‐friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil‐hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil–root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil‐borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding.info:eu-repo/semantics/publishedVersio

    Challenges of viticulture adaptation to global change: tackling the issue from the roots

    Get PDF
    [EN] Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental-friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil-hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil-root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil-borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding.This work is framed in the networking activities of RedVitis (AGL2015-70931-REDT) and RedVitis 2.0 (AGL2017-90759-REDT), funded by the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation. Ms Diana Marin is beneficiary of postgraduate scholarship funded by Universidad Publica de Navarra (FPI-UPNA-2016). Dr Juan Emilio Palomares-Rius acknowledges the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation for the 'Ramon y Cajal' Fellowship RYC-2017-22228 and Dr David Gramaje acknowledges Spanish Ministry of Economy and Competitiveness for the 'Ramon y Cajal' Fellowship RYC-2017-23098.MarĂ­n, D.; Armengol FortĂ­, J.; Carbonell-Bejerano, P.; Escalona, J.; Gramaje PĂ©rez, D.; HernĂĄndez-Montes, E.; Intrigliolo, DS.... (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research. 27(1):8-25. https://doi.org/10.1111/ajgw.12463S825271AGÜERO, C. B., URATSU, S. L., GREVE, C., POWELL, A. L. T., LABAVITCH, J. M., MEREDITH, C. P., & DANDEKAR, A. M. (2005). Evaluation of tolerance to Pierce’s disease andBotrytisin transgenic plants ofVitis viniferaL. expressing the pear PGIP gene. Molecular Plant Pathology, 6(1), 43-51. doi:10.1111/j.1364-3703.2004.00262.xAgustĂ­-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093AgustĂ­-Brisach, C., Gramaje, D., GarcĂ­a-JimĂ©nez, J., & Armengol, J. (2013). Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137(1), 103-112. doi:10.1007/s10658-013-0221-8Alaniz, S., GarcĂ­a-JimĂ©nez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009Alaniz, S., Armengol, J., LeĂłn, M., GarcĂ­a-JimĂ©nez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16-23. doi:10.1016/j.mycres.2008.07.002Albacete, A., Martinez-Andujar, C., Martinez-Perez, A., Thompson, A. J., Dodd, I. C., & Perez-Alfocea, F. (2015). Unravelling rootstockxscion interactions to improve food security. Journal of Experimental Botany, 66(8), 2211-2226. doi:10.1093/jxb/erv027AragĂŒĂ©s, R., Medina, E. T., Zribi, W., ClaverĂ­a, I., Álvaro-Fuentes, J., & Faci, J. (2014). Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrigation Science, 33(1), 67-79. doi:10.1007/s00271-014-0449-xBarrios-Masias, F. H., Knipfer, T., Walker, M. A., & McElrone, A. J. (2019). Differences in hydraulic traits of grapevine rootstocks are not conferred to a common Vitis vinifera scion. Functional Plant Biology, 46(3), 228. doi:10.1071/fp18110Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., 
 Testolin, R. (2015). Grapevine breeding programs in Italy. Grapevine Breeding Programs for the Wine Industry, 135-157. doi:10.1016/b978-1-78242-075-0.00007-7Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., 
 Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12Bert, P.-F., Bordenave, L., Donnart, M., HĂ©vin, C., Ollat, N., & Decroocq, S. (2012). Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theoretical and Applied Genetics, 126(2), 451-473. doi:10.1007/s00122-012-1993-5Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018Bonada, M., Jeffery, D. W., Petrie, P. R., Moran, M. A., & Sadras, V. O. (2015). Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Australian Journal of Grape and Wine Research, 21(2), 240-253. doi:10.1111/ajgw.12142Borie, B., Jacquiot, L., Jamaux-DesprĂ©aux, I., Larignon, P., & PĂ©ros, J.-P. (2002). Genetic diversity in populations of the fungiPhaeomoniella chlamydosporaandPhaeoacremonium aleophilumon grapevine in France. Plant Pathology, 51(1), 85-96. doi:10.1046/j.0032-0862.2001.658.xBravdo, B. (2012). EFFECTS OF SALINITY AND IRRIGATION WITH DESALINATED EFFLUENT AND SEA WATER ON PRODUCTION AND FRUIT QUALITY OF GRAPEVINES (REVIEW AND UPDATE). Acta Horticulturae, (931), 245-258. doi:10.17660/actahortic.2012.931.27Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675Brunori, E., Farina, R., & Biasi, R. (2016). Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems & Environment, 223, 10-21. doi:10.1016/j.agee.2016.02.012Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62-80. doi:10.1016/j.funbio.2011.09.010Carbonell-Bejerano, P., Santa MarĂ­a, E., Torres-PĂ©rez, R., Royo, C., Lijavetzky, D., Bravo, G., 
 MartĂ­nez-Zapater, J. M. (2013). Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg. Plant and Cell Physiology, 54(7), 1200-1216. doi:10.1093/pcp/pct071Carneiro, R., Randig, O., Almeida, M. R., & Gomes, A. C. (2004). Additional information on Meloidogyne ethiopica Whitehead, 1968 (Tylenchida: Meloidogynidae), a root-knot nematode parasitising kiwi fruit and grape-vine from Brazil and Chile. Nematology, 6(1), 109-123. doi:10.1163/156854104323072982Castellarin, S. D., Matthews, M. A., Di Gaspero, G., & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1), 101-112. doi:10.1007/s00425-007-0598-8Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57-78. doi:10.3114/sim.2011.68.03Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., 
 Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. doi:10.1093/aob/mcq030Chitarra, W., Perrone, I., Avanzato, C. G., Minio, A., Boccacci, P., Santini, D., 
 Gambino, G. (2017). Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00654Clark, J. R., & Finn, C. E. (2010). Register of New Fruit and Nut Cultivars List 45. HortScience, 45(5), 716-756. doi:10.21273/hortsci.45.5.716Clingeleffer, P., Morales, N., Davis, H., & Smith, H. (2019). The significance of scion × rootstock interactions. OENO One, 53(2). doi:10.20870/oeno-one.2019.53.2.2438COMAS, L. H., BAUERLE, T. L., & EISSENSTAT, D. M. (2010). Biological and environmental factors controlling root dynamics and function: effects of root ageing and soil moisture. Australian Journal of Grape and Wine Research, 16, 131-137. doi:10.1111/j.1755-0238.2009.00078.xComas, L. H., Anderson, L. J., Dunst, R. M., Lakso, A. N., & Eissenstat, D. M. (2005). Canopy and environmental control of root dynamics in a long‐term study of Concord grape. New Phytologist, 167(3), 829-840. doi:10.1111/j.1469-8137.2005.01456.xComont, G., Corio-Costet, M.-F., Larignon, P., & Delmotte, F. (2010). AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. European Journal of Plant Pathology, 127(4), 451-464. doi:10.1007/s10658-010-9611-3Corso, M., & Bonghi, C. (2014). Grapevine rootstock effects on abiotic stress tolerance. Plant Science Today, 1(3), 108-113. doi:10.14719/pst.2014.1.3.64Corso, M., Vannozzi, A., Maza, E., Vitulo, N., Meggio, F., Pitacco, A., 
 Lucchin, M. (2015). Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of Experimental Botany, 66(19), 5739-5752. doi:10.1093/jxb/erv274Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5-18. doi:10.1016/j.agwat.2015.08.021Cousins, P. (2005). Rootstock Breeding: An Analysis of Intractability. HortScience, 40(7), 1945-1946. doi:10.21273/hortsci.40.7.1945Cramer W. Guiot J.andMarini K.(2019)MedECC booklet: risks associated to climate and environmental changes in the Mediterranean region. A preliminary assessment by the MedECC Network Science‐policy interface.https://www.medecc.org/wp-content/uploads/2018/12/MedECC-Booklet_EN_WEB.pdfCummins, J. N., & Aldwinckle, H. S. (1995). Breeding rootstocks for tree fruit crops. New Zealand Journal of Crop and Horticultural Science, 23(4), 395-402. doi:10.1080/01140671.1995.9513915Davies, W. J., Kudoyarova, G., & Hartung, W. (2005). Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. Journal of Plant Growth Regulation, 24(4). doi:10.1007/s00344-005-0103-1Degu, A., Morcia, C., Tumino, G., Hochberg, U., Toubiana, D., Mattivi, F., 
 Fait, A. (2015). Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology and Biochemistry, 86, 24-33. doi:10.1016/j.plaphy.2014.11.006Delrot, S., Grimplet, J., Carbonell-Bejerano, P., Schwandner, A., Bert, P.-F., Bavaresco, L., 
 Vezzulli, S. (2020). Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. Genomic Designing of Climate-Smart Fruit Crops, 157-270. doi:10.1007/978-3-319-97946-5_7Demangeat, G., Voisin, R., Minot, J.-C., Bosselut, N., Fuchs, M., & Esmenjaud, D. (2005). Survival of Xiphinema index in Vineyard Soil and Retention of Grapevine fanleaf virus Over Extended Time in the Absence of Host Plants. PhytopathologyÂź, 95(10), 1151-1156. doi:10.1094/phyto-95-1151Downton, W. (1977). Photosynthesis in Salt-Stressed Grapevines. Functional Plant Biology, 4(2), 183. doi:10.1071/pp9770183Dutt, M., Li, Z. T., Kelley, K. T., Dhekney, S. A., Van Aman, M., Tattersall, J., & Gray, D. J. (2007). TRANSGENIC ROOTSTOCK PROTEIN TRANSMISSION IN GRAPEVINES. Acta Horticulturae, (738), 749-754. doi:10.17660/actahortic.2007.738.99Eissenstat, D. M., Bauerle, T. L., Comas, L. H., Lakso, A. N., Neilsen, D., Neilsen, G. H., & Smart, D. R. (2006). SEASONAL PATTERNS OF ROOT GROWTH IN RELATION TO SHOOT PHENOLOGY IN GRAPE AND APPLE. Acta Horticulturae, (721), 21-26. doi:10.17660/actahortic.2006.721.1ESCALONA, J. M., TOMÀS, M., MARTORELL, S., MEDRANO, H., RIBAS-CARBO, M., & FLEXAS, J. (2012). Carbon balance in grapevines under different soil water supply: importance of whole plant respiration. Australian Journal of Grape and Wine Research, 18(3), 308-318. doi:10.1111/j.1755-0238.2012.00193.xEsmenjaud, D., & Bouquet, A. (2009). Selection and Application of Resistant Germplasm for Grapevine Nematodes Management. Integrated Management of Fruit Crops Nematodes, 195-214. doi:10.1007/978-1-4020-9858-1_8Fahrentrapp, J., MĂŒller, L., & Schumacher, P. (2015). Is there need for leaf-galling grape phylloxera control? Presence and distribution ofDactulosphaira vitifoliaein Swiss vineyards. International Journal of Pest Management, 61(4), 340-345. doi:10.1080/09670874.2015.1067734FLEXAS, J., GALMà S, J., GALLà , A., GULà AS, J., POU, A., RIBAS-CARBO, M., 
 MEDRANO, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. doi:10.1111/j.1755-0238.2009.00057.xFort, K. P., Heinitz, C. C., & Walker, M. A. (2015). Chloride exclusion patterns in six grapevine populations. Australian Journal of Grape and Wine Research, 21(1), 147-155. doi:10.1111/ajgw.12125Foundation Plant Services(2020) Grape Variery: RS‐2. Grape program at Foundation Plant Services.https://fps.ucdavis.edu/Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. doi:10.1002/fes3.14Franck, N., Morales, J. P., Arancibia‐Avendaño, D., GarcĂ­a de CortĂĄzar, V., Perez‐Quezada, J. F., Zurita‐Silva, A., & Pastenes, C. (2011). Seasonal fluctuations in Vitis vinifera root respiration in the field. New Phytologist, 192(4), 939-951. doi:10.1111/j.1469-8137.2011.03860.xFu, Q., Tan, Y., Zhai, H., & Du, Y. (2019). Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Scientia Horticulturae, 243, 148-158. doi:10.1016/j.scienta.2018.07.034Funes, I., SavĂ©, R., Rovira, P., Molowny-Horas, R., Alcañiz, J. M., Ascaso, E., 
 Vayreda, J. (2019). Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability. Science of The Total Environment, 668, 283-294. doi:10.1016/j.scitotenv.2019.02.317Galbignani, M., Merli, M. C., Magnanini, E., Bernizzoni, F., Talaverano, I., Gatti, M., 
 Poni, S. (2016). Gas exchange and water-use efficiency of cv. Sangiovese grafted to rootstocks of varying water-deficit tolerance. Irrigation Science, 34(2), 105-116. doi:10.1007/s00271-016-0490-zGambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., 
 McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312Geier, T., Eimert, K., Scherer, R., & Nickel, C. (2008). Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell, Tissue and Organ Culture, 94(3), 269-280. doi:10.1007/s11240-008-9352-6Girollet, N., Rubio, B., Lopez-Roques, C., ValiĂšre, S., Ollat, N., & Bert, P.-F. (2019). De novo phased assembly of the Vitis riparia grape genome. Scientific Data, 6(1). doi:10.1038/s41597-019-0133-3GĂłmez, J., Lasanta, C., Palacios-Santander, J. M., & Cubillana-Aguilera, L. M. (2015). Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions. Food Chemistry, 168, 218-224. doi:10.1016/j.foodchem.2014.07.058Gong, H., Blackmore, D., Clingeleffer, P., Sykes, S., Jha, D., Tester, M., & Walker, R. (2010). Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. Journal of Experimental Botany, 62(3), 989-999. doi:10.1093/jxb/erq326Gramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025Gramaje, D., Armengol, J., & Ridgway, H. J. (2012). Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. European Journal of Plant Pathology, 135(4), 727-743. doi:10.1007/s10658-012-0110-6Gramaje, D., GarcĂ­a-JimĂ©nez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102(1), 12-39. doi:10.1094/pdis-04-17-0512-feGramaje, D., Mostert, L., Groenewald, J. Z., & Crous, P. W. (2015). Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biology, 119(9), 759-783. doi:10.1016/j.funbio.2015.06.004Gramaje, D., LeĂłn, M., Santana, M., Crous, P. W., & Armengol, J. (2014). Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea. PLoS ONE, 9(10), e110417. doi:10.1371/journal.pone.0110417Granett, J., Walker, M. A., Kocsis, L., & Omer, A. D. (2001). BIOLOGY AND MANAGEMENT OF GRAPE PHYLLOXERA. Annual Review of Entomology, 46(1), 387-412. doi:10.1146/annurev.ento.46.1.387Gubler, W. D., Baumgartner, K., Browne, G. T., Eskalen, A., Latham, S. R., Petit, E., & Bayramian, L. A. (2004). Root diseases of grapevines in California and their control. Australasian Plant Pathology, 33(2), 157. doi:10.1071/ap04019Gullo, G., Dattola, A., Vonella, V., & Zappia, R. (2018). Evaluation of water relation parameters in vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Journal of Plant Physiology, 226, 172-178. doi:10.1016/j.jplph.2018.04.013Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. doi:10.1016/j.envexpbot.2019.03.022Hajdu, E. (2015). Grapevine breeding in Hungary. Grapevine Breeding Programs for the Wine Industry, 103-134. doi:10.1016/b978-1-78242-075-0.00006-5Harbertson, J. F., & Keller, M. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Grape and Wine Composition. American Journal of Enology and Viticulture, 63(1), 40-48. doi:10.5344/ajev.2011.11079Haywood, V., Yu, T.-S., Huang, N.-C., & Lucas, W. J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. The Plant Journal, 42(1), 49-68. doi:10.1111/j.1365-313x.2005.02351.xHe, F., Mu, L., Yan, G.-L., Liang, N.-N., Pan, Q.-H., Wang, J., 
 Duan, C.-Q. (2010). Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules, 15(12), 9057-9091. doi:10.3390/molecules15129057He, R., Zhuang, Y., Cai, Y., AgĂŒero, C. B., Liu, S., Wu, J., 
 Zhang, Y. (2018). Overexpression of 9-cis-Epoxycarotenoid Dioxygenase Cisgene in Grapevine Increases Drought Tolerance and Results in Pleiotropic Effects. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00970Heinitz, C. C., Riaz, S., Tenscher, A. C., Romero, N., & Walker, M. A. (2020). Survey of chloride exclusion in grape germplasm from the southwestern United States and Mexico. Crop Science, 60(4), 1946-1956. doi:10.1002/csc2.20085Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., 
 Ritzenthaler, C. (2017). Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 16(2), 660-671. doi:10.1111/pbi.12819Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8Henderson, S. W., Dunlevy, J. D., Wu, Y., Blackmore, D. H., Walker, R. R., Edwards, E. J., 
 Walker, A. R. (2017). Functional differences in transport properties of natural HKT 1;1 variants influence shoot Na + exclusion in grapevine rootstocks. New Phytologist, 217(3), 1113-1127. doi:10.1111/nph.14888HernĂĄndez-Montes, E., Escalona, J. M., TomĂĄs, M., & Medrano, H. (2017). Influence of water availability and grapevine phenological stage on the spatial variation in soil respiration. Australian Journal of Grape and Wine Research, 23(2), 273-279. doi:10.1111/ajgw.12279De Herralde, F., Sa

    One-year longitudinal association between changes in dietary choline or betaine intake and cardiometabolic variables in the PREvenciĂłn con DIeta MEDiterrĂĄnea-Plus (PREDIMED-Plus) trial

    Get PDF
    Choline and betaine intakes have been related to cardiovascular health. We aimed to explore the relation between 1-y changes in dietary intake of choline or betaine and 1-y changes in cardiometabolic and renal function traits within the frame of the PREDIMED (PREvenciĂłn con DIeta MEDiterrĂĄnea)-Plus trial. We used baseline and 1-y follow-up data from 5613 participants (48.2% female and 51.8% male; mean ± SD age: 65.01 ± 4.91 y) to assess cardiometabolic traits, and 3367 participants to assess renal function, of the Spanish PREDIMED-Plus trial. Participants met ≄3 criteria of metabolic syndrome and had overweight or obesity [BMI (in kg/m 2) ≄27 and ≀40]. These criteria were similar to those of the PREDIMED parent study. Dietary intakes of choline and betaine were estimated from the FFQ. The greatest 1-y increase in dietary choline or betaine intake (quartile 4) was associated with improved serum glucose concentrations (−3.39 and −2.72 mg/dL for choline and betaine, respectively) and HbA1c levels (−0.10% for quartile 4 of either choline or betaine intake increase). Other significant changes associated with the greatest increase in choline or betaine intake were reduced body weight (−2.93 and −2.78 kg, respectively), BMI (−1.05 and −0.99, respectively), waist circumference (−3.37 and −3.26 cm, respectively), total cholesterol (−4.74 and −4.52 mg/dL, respectively), and LDL cholesterol (−4.30 and −4.16 mg/dL, respectively). Urine creatinine was reduced in quartile 4 of 1-y increase in choline or betaine intake (−5.42 and −5.74 mg/dL, respectively). Increases in dietary choline or betaine intakes were longitudinally related to improvements in cardiometabolic parameters. Markers of renal function were also slightly improved, and they require further investigation. This trial was registered at as ISRCTN89898870

    Differences in MEF2 and NFAT Transcriptional Pathways According to Human Heart Failure Aetiology

    Get PDF
    BACKGROUND:Ca(2+) handling machinery modulates the activation of cardiac transcription pathways involved in heart failure (HF). The present study investigated the effect of HF aetiology on Ca(+2) handling proteins and NFAT1, MEF2C and GATA4 (transcription factors) in the same cardiac tissue. METHODOLOGY AND PRINCIPAL FINDINGS:A total of 83 hearts from ischemic (ICM, n = 43) and dilated (DCM, n = 31) patients undergoing heart transplantation and controls (CNT, n = 9) were analyzed by western blotting. Subcellular distribution was analyzed by fluorescence and electron microscopy. When we compared Ca(+2) handling proteins according to HF aetiology, ICM showed higher levels of calmodulin (24%, p<0.01), calcineurin (26%, p<0.01) and Ca(2+)/Calmodulin-dependent kinase II (CaMKIIή(b) nuclear isoform 62%, p<0.001) than the CNT group. However, these proteins in DCM did not significantly increase. Furthermore, ICM showed a significant elevation in MEF2C (33%, p<0.01), and GATA4 (49%, p<0.05); also NFAT1 (66%, p<0.001) was increased, producing the resultant translocation of this transcriptional factor into the nuclei. These results were supported by fluorescence and electron microscopy analysis. Whereas, DCM only had a significant increase in GATA4 (52%, p<0.05). Correlations between NFAT1 and MEF2C in both groups (ICM r = 0.38 and DCM r = 0.59, p<0.05 and p<0.01, respectively) were found; only ICM showed a correlation between GATA4 and NFAT1 (r = 0.37, p<0.05). CONCLUSIONS/SIGNIFICANCE:This study shows an increase of Ca(2+) handling machinery synthesis and their cardiac transcription pathways in HF, being more markedly increased in ICM. Furthermore, there is a significant association between MEF2, NFAT1 and GATA4. These proteins could be therapeutic targets to improve myocardial function

    Higher versus lower nut consumption and changes in cognitive performance over two years in a population at risk of cognitive decline: a cohort study

    Full text link
    Background: Tree nuts and peanuts (henceforth, nuts) are nutrient-dense foods rich in neuroprotective components; thus, their consumption could benefit cognitive health. However, evidence to date is limited and inconsistent regarding the potential benefits of nuts for cognitive function. Objective: To prospectively evaluate the association between nut consumption and 2-y changes in cognitive performance in older adults at cognitive decline risk. Methods: A total of 6,630 participants aged 55 to 75 y (mean age 65.0±4.9 y, 48.4% women) with overweight/obesity and metabolic syndrome completed a validated semi-quantitative food frequency questionnaire and a comprehensive battery of neuropsychological tests at baseline and a 2-y follow-up. Composite cognitive scores were used to assess global, general, attention, and executive function domains. Nut consumption was categorized as Results: Nut consumption was positively associated with 2-y changes in general cognitive function (P-trend Conclusion: Frequent nut consumption was associated with a smaller decline in general cognitive performance over 2 y in older adults at risk of cognitive decline. Randomized clinical trials to verify our findings are warranted

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Coalescent Simulations Reveal Hybridization and Incomplete Lineage Sorting in Mediterranean Linaria

    Get PDF
    We examined the phylogenetic history of Linaria with special emphasis on the Mediterranean sect. Supinae (44 species). We revealed extensive highly supported incongruence among two nuclear (ITS, AGT1) and two plastid regions (rpl32-trnLUAG, trnS-trnG). Coalescent simulations, a hybrid detection test and species tree inference in *BEAST revealed that incomplete lineage sorting and hybridization may both be responsible for the incongruent pattern observed. Additionally, we present a multilabelled *BEAST species tree as an alternative approach that allows the possibility of observing multiple placements in the species tree for the same taxa. That permitted the incorporation of processes such as hybridization within the tree while not violating the assumptions of the *BEAST model. This methodology is presented as a functional tool to disclose the evolutionary history of species complexes that have experienced both hybridization and incomplete lineage sorting. The drastic climatic events that have occurred in the Mediterranean since the late Miocene, including the Quaternary-type climatic oscillations, may have made both processes highly recurrent in the Mediterranean flora
    corecore