116 research outputs found

    The brain-computer analogy "A special issue"

    Full text link
    In this review essay, we give a detailed synopsis of the twelve contributions which are collected in a Special Issue in Frontiers Ecology and Evolution, based on the research topic "Current Thoughts on the Brain-Computer Analogy All Metaphors Are Wrong, But Some Are Useful." The synopsis is complemented by a graphical summary, a matrix which links articles to selected concepts. As first identified by Turing, all authors in this Special Issue recognize semantics as a crucial concern in the brain-computer analogy debate, and consequently address a number of such issues. What is missing, we believe, is the distinction between metaphor and analogy, which we reevaluate, describe in some detail, and offer a definition for the latter. To enrich the debate, we also deem necessary to develop on the evolutionary theories of the brain, of which we provide an overview. This article closes with thoughts on creativity in Science, for we concur with the stance that metaphors and analogies, and their esthetic impact, are essential to the creative process, be it in Sciences as well as in Arts

    Of circuits and brains. The origin and diversification of neural architectures

    Get PDF
    Nervous systems are complex cellular structures that allow animals to interact with their environment, which includes both the external and the internal milieu. The astonishing diversity of nervous system architectures present in all animal clades has prompted the idea that selective forces must have shaped them over evolutionary time. In most cases, neurons seem to coalesce into specific (centralized) structures that function as "central processing units" (CPU): "brains." Why did neural systems adopt this physical configuration? When did it first happen? What are the physiological, computational, and/or structural advantages of concentrating many neurons in a specific place within the body? Here we examine the concept of nervous system centralization and factors that might have contributed to the evolutionary success of this centralization strategy. In particular, we suggest a putative scenario for the evolution of neural system centralization that incorporates different strands of evidence. This scenario is based on some premises: (1) Receptors originated before neurons (sensors before transmitters) and there were deployed in the first organisms in an asymmetric fashion (deposited randomly in the outer layer); (2) Receptors were segregated in a preferential position in response to an anisotropic environment, (3) Neurons were born in association with this receptors and used to transmit signals distally; (4) Energetics preferentially selected the localization of neurons, and synapsis, close to the receptors (to minimize wire use, for instance); (5) The presence of condensed areas of neurons could have stimulated the proliferation of more receptors in the vicinity, increasing the repertoire of signals processed in an specific body domain (i.e., head) plus contributing to amplify the computational power of the neuronal aggregate; (6) The proliferation of receptors would have induced the proliferation of more neurons in the aggregate, with a further increase in its computational power (hence, diversifying the behavioral repertoire). These last two steps of proliferation and aggregation could have been sustained through a feedback loop, reiterated many times, generating distinct topologies in different lineages. Our main aim in this paper is to examine the brain as both a biological and a physical or computational device

    Associative learning in the cnidarian Nematostella vectensis.

    Full text link
    The ability to learn and form memories allows animals to adapt their behavior based on previous experiences. Associative learning, the process through which organisms learn about the relationship between two distinct events, has been extensively studied in various animal taxa. However, the existence of associative learning, prior to the emergence of centralized nervous systems in bilaterian animals, remains unclear. Cnidarians such as sea anemones or jellyfish possess a nerve net, which lacks centralization. As the sister group to bilaterians, they are particularly well suited for studying the evolution of nervous system functions. Here, we probe the capacity of the starlet sea anemone Nematostella vectensis to form associative memories by using a classical conditioning approach. We developed a protocol combining light as the conditioned stimulus with an electric shock as the aversive unconditioned stimulus. After repetitive training, animals exhibited a conditioned response to light alone indicating that they learned the association. In contrast, all control conditions did not form associative memories. Besides shedding light on an aspect of cnidarian behavior, these results root associative learning before the emergence of NS centralization in the metazoan lineage and raise fundamental questions about the origin and evolution of cognition in brainless animals

    Mesodermal gene expression in the acoel isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads

    Get PDF
    Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha

    Characterization of the bHLH family of transcriptional regulators in the acoel S. roscofensis and their putative role in neurogenesis

    Get PDF
    Background: The basic helix-loop-helix (bHLH) family of transcription factors is one of the largest superfamilies of regulatory transcription factors and is widely used in eukaryotic organisms. They play an essential role in a range of metabolic, physiological, and developmental processes, including the development of the nervous system (NS). These transcription factors have been studied in many metazoans, especially in vertebrates but also in early branching metazoan clades such as the cnidarians and sponges. However, currently very little is known about their expression in the most basally branching bilaterian group, the xenacoelomorphs. Recently, our laboratory has characterized the full complement of bHLH in the genome of two members of the Xenacoelomorpha, the xenoturbellid Xenoturbella bocki and the acoel Symsagittifera roscoffensis. Understanding the patterns of bHLH gene expression in members of this phylum (in space and time) provides critical new insights into the conserved roles of the bHLH and their putative specificities in this group. Our focus is on deciphering the specific roles that these genes have in the process of neurogenesis. Results: Here, we analyze the developmental expression of the whole complement of bHLH genes identified in the acoel S. roscoffensis. Based on their expression patterns, several members of bHLH class A appear to have specific conserved roles in neurogenesis, while other class A genes (as well as members of other classes) have likely taken on more generalized functions. All gene expression patterns are described in embryos and early juveniles. Conclusion: Our results suggest that the main roles of the bHLH genes of S. roscoffensis are evolutionarily conserved, with a specific subset dedicated to patterning the nervous system: SrAscA, SrAscB, SrHes/Hey, SrNscl, SrSrebp, SrE12/ E47 and SrOlig

    Reduction of pharmaceutical expenditure by a drug appropriateness intervention in polymedicated elderly subjects in Catalonia

    Get PDF
    To assess the monetary savings resulting from a pharmacist intervention on the appropriateness of prescribed drugs in community-dwelling polymedicated (≄8 drugs) elderly people (≄70 years). (...

    The nervous system of Xenacoelomorpha: a genomic perspective

    Full text link
    Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of 'cephalized' (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of 'progressive' cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper

    Nuevas poblaciones de especies protegidas en el sur de la Comunidad Valenciana, I

    Get PDF
    Se comentan nuevas poblaciones de algunas especies protegidas de plantas vasculares observadas en el Sur de la provincia de Alicante.Some new populations of protected species of vascular plants found in the South of Alicante province are commented

    Fundamental aspects of arm repair phase in two echinoderm models

    Get PDF
    Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage

    Hydrogen production via microwave-induced water splitting at low temperature

    Full text link
    [EN] Hydrogen is a promising vector in the decarbonization of energy systems, but more efficient and scalable synthesis is required to enable its widespread deployment. Towards that aim, Serra et al. present a microwave-based approach that allows contactless water electrolysis that can be integrated with hydrocarbon production. Supplying global energy demand with CO2-free technologies is becoming feasible thanks to the rising affordability of renewable resources. Hydrogen is a promising vector in the decarbonization of energy systems, but more efficient and scalable synthesis is required to enable its widespread deployment. Here we report contactless H-2 production via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures (<250 degrees C). Water was reduced via reaction with non-equilibrium gadolinium-doped CeO2 that was previously in situ electrochemically deoxygenated by the sole application of microwaves. The microwave-driven reduction was identified by an instantaneous electrical conductivity rise and O-2 release. This process was cyclable, whereas H-2 yield and energy efficiency were material- and power-dependent. Deoxygenation of low-energy molecules (H2O or CO2) led to the formation of energy carriers and enabled CH4 production when integrated with a Sabatier reactor. This method could be extended to other reactions such as intensified hydrocarbons synthesis or oxidation.This work was supported by the Spanish Government (RTI2018-102161, SEV-2016-0683 and Juan de la Cierva grant IJCI-2017-34110). We thank the support of the Electronic Microscopy Service of the Universitat Politecnica de Valencia.Serra Alfaro, JM.; Borras-Morell, JF.; GarcĂ­a-Baños, B.; Balaguer Ramirez, M.; Plaza GonzĂĄlez, PJ.; Santos-Blasco, J.; CatalĂĄn-MartĂ­nez, D.... (2020). Hydrogen production via microwave-induced water splitting at low temperature. Nature Energy. 5(11):910-919. https://doi.org/10.1038/s41560-020-00720-6910919511Serra, J. M. Electrifying chemistry with protonic cells. Nat. Energy 4, 178–179 (2019).Wei, M., McMillan, C. A. & de la Rue du Can, S. Electrification of industry: potential, challenges and outlook. Curr. Sustain. Energy Rep. 6, 140–148 (2019).MalerĂžd-Fjeld, H. et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nat. Energy 2, 923–931 (2017).Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).Ran, J., Zhang, J., Yu, J., Jaroniec, M. & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).VĂžllestad, E. et al. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater. 18, 752–759 (2019).Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019).Service, R. F. New electrolyzer splits water on the cheap. Science 367, 1181 (2020).Hamzehlouia, S., Jaffer, S. A. & Chaouki, J. Microwave heating-assisted catalytic dry reforming of methane to syngas. Sci. Rep. 8, 8940 (2018).Tsukahara, Y. et al. In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. J. Phys. Chem. C 114, 8965–8970 (2010).Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).Eigen, J. & Schroeder, M. Redox cycling stability of Fe2NiO4/YSZ composite storage materials for rechargeable oxide batteries. Energy Storage Mater. 28, 112–121 (2020).CatalĂĄ-Civera, J. M. et al. Dynamic measurement of dielectric properties of materials at high temperature during microwave heating in a dual mode cylindrical cavity. IEEE Trans. Microw. Theory Tech. 63, 2905–2914 (2012).GarcĂ­a-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., FernĂĄndez, J. F. & CatalĂĄ-Civera, J. M. Temperature assessment of microwave-enhanced heating processes. Sci. Rep. 9, 10809 (2019).Campbell, C. T. & Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 309, 713–714 (2005).Naghavi, S. S. et al. Giant onsite electronic entropy enhances the performance of ceria for water splitting. Nat. Commun. 8, 1–6 (2017).Chueh, W. C. et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Sci. 330, 1797–1801 (2010).Bulfin, B. et al. Analytical model of CeO2 oxidation and reduction. J. Phys. Chem. C 117, 24129–24137 (2013).Geller, A. et al. Operando tracking of electrochemical activity in solid oxide electrochemical cells by using near-infrared imaging. ChemElectroChem 2, 1527–1534 (2015).Balaguer, M., SolĂ­s, C. & Serra, J. M. Structural-transport properties relationships on Ce1–xLnxO2–ή system (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and effect of cobalt addition. J. Phys. Chem. C 116, 7975–7982 (2012).Holstein, T. Studies of polaron motion. Part II. The ‘small’ polaron. Ann. Phys. (N. Y). 8, 343–389 (1959).Seki, K. & Tachiya, M. Electric field dependence of charge mobility in energetically disordered materials: polaron aspects. Phys. Rev. B 65, 1–13 (2002).Emin, D. Generalized adiabatic polaron hopping: Meyer–Neldel compensation and Poole–Frenkel behavior. Phys. Rev. Lett. 100, 166602 (2008).Bishop, S. R., Duncan, K. L. & Wachsman, E. D. Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Mater. 57, 3596–3605 (2009).Suzuki, T., Kosacki, I. & Anderson, H. U. Defect and mixed conductivity in nanocrystalline doped cerium oxide. J. Am. Ceram. Soc. 85, 1492–1498 (2002).Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018).Liu, W., Song, M.-S., Kong, B. & Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017).Berger, C. M. et al. Development of storage materials for high-temperature rechargeable oxide batteries. J. Energy Storage 1, 54–64 (2015).Posdziech, O., Schwarze, K. & Brabandt, J. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. Int. J. Hydrog. Energy 44, 19089–19101 (2019).Maric, R. & Yu, H. In Nanostructures in Energy Generation, Transmission and Storage (IntechOpen, 2018).Dincer, I. & Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy 40, 11094–11111 (2015).Gielen, D. Hydrogen from Renewable Power Technology Outlook for the Energy Transition (2018).Kuckshinrichs, W., Ketelaer, T. & Koj, J. C. Economic analysis of improved alkaline water electrolysis. Front. Energy Res. 5, 1 (2017).Holladay, J. D., Hu, J., King, D. L. & Wang, Y. An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009).Glenk, G. & Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019).Marxer, D., Furler, P., Takacs, M. & Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 10, 1142–1149 (2017).Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).Eckle, S., Anfang, H. G. & Behm, R. J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J. Phys. Chem. C 115, 1361–1367 (2011).Wei, Y. et al. Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. Energy Environ. Sci. 4, 2959–2970 (2011).Santos, V. P., Pereira, M. F. R., ÓrfĂŁo, J. J. M. & Figueiredo, J. L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B 99, 353–363 (2010).Hickman, D. A. & Schmidt, L. D. Production of syngas by direct catalytic oxidation of methane. Science 259, 343–346 (1993).Feng, Z. A. et al. Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface. Nat. Commun. 5, 1–9 (2014).Flytzani-Stephanopoulos, M., Sakbodin, M. & Wang, Z. Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides. Science 312, 1508–1510 (2006).Paunović, V. et al. Europium oxybromide catalysts for efficient bromine looping in natural gas valorization. Angew. Chem. Int. Ed. 56, 9791–9795 (2017).Krupka, J. Contactless methods of conductivity and sheet resistance measurement for semiconductors, conductors and superconductors. Meas. Sci. Technol. 24, 62001 (2013).Altschuler, H. M. Handbook of Microwave Measurements Vol. 2 (Polytechnic Institute Brooklyn Press, 1963).Arai, M., Binner, J. G. P. & Cross, T. E. Comparison of techniques for measuring high-temperature microwave complex permittivity: measurements on an alumina/zircona system. J. Microw. Power Electromagn. Energy 31, 12–18 (1996).LĂłpez, R. & GĂłmez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Sol.-Gel Sci. Technol. 61, 1–7 (2012).Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007).Skorodumova, N. V. et al. Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Phys. Rev. B 64, 1151081–1151089 (2001)
    • 

    corecore