3,931 research outputs found

    Discovery of a new Transient X-ray Pulsar in the Small Magellanic Cloud

    Get PDF
    Rossi X-Ray Timing Explorer observations of the Small Magellanic Cloud have revealed a previously unknown transient X-ray pulsar with a pulse period of 95s. Provisionally designated XTE SMC95, the pulsar was detected in three Proportional Counter Array observations during an outburst spanning 4 weeks in March/April 1999. The pulse profile is double peaked reaching a pulse fraction \~0.8. The source is proposed as a Be/neutron star system on the basis of its pulsations, transient nature and characteristically hard X-ray spectrum. The 2-10 keV X-ray luminosity implied by our observations is > 2x10^37 erg/s which is consistent with that of normal outbursts seen in Galactic systems. This discovery adds to the emerging picture of the SMC as containing an extremely dense population of transient high mass X-ray binaries.Comment: Accepted by A&A. 7 pages, 6 figure

    COSMOGRAIL: XVII. Time delays for the quadruply imaged quasar PG 1115+080

    Get PDF
    Indexación: Scopus.Acknowledgements. The authors would like to thank R. Gredel for his help in setting up the program at the ESO MPIA 2.2 m telescope, and the anonymous referee for his or her comments on this work. This work is supported by the Swiss National Fundation. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018) and the 2D graphics environment Matplotlib (Hunter 2007). K.R. acknowledge support from PhD fellowship FIB-UV 2015/2016 and Becas de Doctorado Nacional CONICYT 2017 and thanks the LSSTC Data Science Fellowship Program, her time as a Fellow has benefited this work. M.T. acknowledges support by the DFG grant Hi 1495/2-1. G. C.-F. C. acknowledges support from the Ministry of Education in Taiwan via Government Scholarship to Study Abroad (GSSA). D. C.-Y. Chao and S. H. Suyu gratefully acknowledge the support from the Max Planck Society through the Max Planck Research Group for S. H. Suyu. T. A. acknowledges support by the Ministry for the Economy, Development, and Tourism’s Programa Inicativa Científica Milenio through grant IC 12009, awarded to The Millennium Institute of Astrophysics (MAS).We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our results are based on almost daily observations for seven months at the ESO MPIA 2.2 m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyze existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we considered the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications. In 15 yr of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Δt(AB) = 8.3+1.5 -1.6 days (18.7% precision), Δt(AC) = 9.9+1.1 -1.1 days (11.1%) and Δt(BC) = 18.8+1.6 -1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope. © ESO 2018.https://www.aanda.org/articles/aa/abs/2018/08/aa33287-18/aa33287-18.htm

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    COSMOGRAIL XVIII: time delays of the quadruply lensed quasar WFI2033-4723

    Full text link
    We present new measurements of the time delays of WFI2033-4723. The data sets used in this work include 14 years of data taken at the 1.2m Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3m telescope at Las Campanas Observatory and a single year of high-cadence and high-precision monitoring at the MPIA 2.2m telescope. The time delays measured from these different data sets, all taken in the R-band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from our data sets results in Dt_AB = 36.2-0.8+0.7 days (2.1% precision), Dt_AC = -23.3-1.4+1.2 days (5.6%) and Dt_BC = -59.4-1.3+1.3 days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can be resolved in the MPIA 2.2m data. We measure a time delay consistent with zero in this pair of images. We also explore the prior distributions of microlensing time-delay potentially affecting the cosmological time-delay measurements of WFI2033-4723. There is however no strong indication in our measurements that microlensing time delay is neither present nor absent. This work is part of a H0LiCOW series focusing on measuring the Hubble constant from WFI2033-4723.Comment: Submitted to Astronomy and Astrophysic

    COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408-5354 with high-cadence photometric monitoring

    Full text link
    We present time-delay measurements for the new quadruply imaged quasar DES J0408-5354, the first quadruply imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data quality allows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, hence making the time delay measurement very robust against microlensing. In only 7 months we measure very accurately one of the time delays in DES J0408-5354: Dt(AB) = -112.1 +- 2.1 days (1.8%) using only the MPIA 2.2m data. In combination with data taken with the 1.2m Euler Swiss telescope, we also measure two delays involving the D component of the system Dt(AD) = -155.5 +- 12.8 days (8.2%) and Dt(BD) = -42.4 +- 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep HST imaging or ground-based Adaptive Optics (AO), and information on the velocity field of the lensing galaxy.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Dark energy with gravitational lens time delays

    Full text link
    Strong lensing gravitational time delays are a powerful and cost effective probe of dark energy. Recent studies have shown that a single lens can provide a distance measurement with 6-7 % accuracy (including random and systematic uncertainties), provided sufficient data are available to determine the time delay and reconstruct the gravitational potential of the deflector. Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one to break degeneracies in the interpretation of data from higher-redshift probes like the cosmic microwave background in terms of the dark energy equation of state. Current studies are limited by the size of the sample of known lensed quasars, but this situation is about to change. Even in this decade, wide field imaging surveys are likely to discover thousands of lensed quasars, enabling the targeted study of ~100 of these systems and resulting in substantial gains in the dark energy figure of merit. In the next decade, a further order of magnitude improvement will be possible with the 10000 systems expected to be detected and measured with LSST and Euclid. To fully exploit these gains, we identify three priorities. First, support for the development of software required for the analysis of the data. Second, in this decade, small robotic telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will transform the field by delivering accurate time delays for ~100 systems. Third, in the 2020's, LSST will deliver 1000's of time delays; the bottleneck will instead be the aquisition and analysis of high resolution imaging follow-up. Thus, the top priority for the next decade is to support fast high resolution imaging capabilities, such as those enabled by the James Webb Space Telescope and next generation adaptive optics systems on large ground based telescopes.Comment: White paper submitted to SNOWMASS201

    Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation

    Get PDF
    International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component
    corecore