40 research outputs found
A polĂtica em Hannah Arendt: ambiente, lugar por excelĂȘncia do fenĂłmeno polĂtico
Tese de mestrado,Filosofia da Natureza e do Ambiente, apresentada Ă Faculdade de Letras da Universidade de Lisboa, 2008âO que estamos a fazer?â â questĂŁo que se coloca apĂłs tomarmos consciĂȘncia que vivemos em colisĂŁo com o sistema ecolĂłgico do planeta. A mesma questĂŁo impĂŽs-se a Hannah Arendt quando, na vivĂȘncia dos tempos sombrios do sĂ©culo XX, verificou que a humanidade vivia em conflito consigo prĂłpria. Arendt Ă© uma pensadora do começo. Neste contexto, e porque a crise ambiental Ă© uma questĂŁo pĂșblica e polĂtica que se impĂ”e, com Arendt procurĂĄmos o sentido das duas categorias, visando resgatar uma nova cidadania consciente da sua pertença ao mundos natural e humano, a partir da qual encontre uma via de recuperação dos mesmos. Assim, tendo por base a anĂĄlise arendtiana da tripla dimensĂŁo da vita activa, labor, trabalho e acção, interpretĂĄmos o pensamento de Arendt sob duas perspectivas: na vertente polĂtica, porque encerra em si a possibilidade do novo e convoca a participação de todos, e na vertente ambiental, enquanto contexto promotor da acção polĂtica. Ambas revelam uma pensadora pioneira na interpretação da sociedade de risco e comprovam que a asfixia do planeta nĂŁo Ă© indiferente Ă crise civilizacional. The Human Condition (1958) Ă© o livro de referĂȘncia, embora toda a obra concorra para a tese que propomos: o Ambiente como lugar, por excelĂȘncia, do fenĂłmeno polĂtico. O cinema, enquanto arte polĂtica, tem aqui espaço. Surge atravĂ©s da interpretação dos filmes Notre Musique de Godard (2004) e An Inconvenient Truth de Al Gore (2006), que confirmam a actualidade do pensamento arendtiano e consolidam a nossa reflexĂŁo. Embora em contextos diferentes, estes autores partilham com Arendt o apelo ao regresso ao mundo e Ă Terra atravĂ©s da acção pĂșblica e polĂtica. Apelo que reforçamos.ABSTRACT:âWhat are we doing?â â a question that we ask after we become conscience that we live in collision with the planetâs ecological system. The same question was faced by Hannah Arendt when, in the XX century dark times, she realized that mankind was living in conflict with itself. Arendt is a thinker of beginnings. In this context, and because the environmental crisis is a public and political question in existence at this time, with Arendt we look for the meaning of these categories, to create a new citizenship conscience of the sense of belonging to the planet and manâs world, and by this sense of belonging recognizes the way to recuperate these. In this way, based on the analysis of the triple dimension of vita activa â labor, work, action â we look at Arendtâ works in two lights: in the political context, because it contains the possibility of the new and it requests the participation of all; and in the environmental context, while a promoter of the political action. Both reflect a pioneer thinker of society at risk and prove that the planetâs asphyxiation is not indifferent to the civilization crisis. The Human Condition (1958) is our reference to the thesis proposed: the environment as the place where the political phenomena could occur. Cinema, although a political art, has its own place in this thesis. It is displayed here in two current movies, Notre Musique from Godard (2004) e An Inconvenient Truth from Al Gore (2006), that confirms the actuality of Arendtâ thinking and consolidates our reflection. Although in different contexts, these authors share, with Arendt, the appeal to return to the planet and manâs world through political and public action. We share the same call
OsteogĂȘnese imperfeita: diagnĂłstico clĂnico, radiolĂłgico e laboratorial
A osteogĂȘnese imperfeita (OI) Ă© uma patologia geneticamente determinada, afetando diretamente estruturas e funçÔes do colĂĄgeno tipo I, sendo este, representante de 90% de todo o colĂĄgeno tecidual, e responsĂĄvel por grande parte dos tecidos fibrosos densos, que formam o sistema muscular esquelĂ©tico. Trata-se de uma doença rara, a depender da classificação, dividida em dois grandes grupos, ââcongĂȘnitaââ e ââtardiaââ. Por certo, o diagnĂłstico Ă© feito a partir do histĂłrico do paciente, quadro clĂnico, aspecto ao exame fĂsico e resultados radiogrĂĄficos, inexistindo um exame especĂfico e complementar para uma confirmação da doença, isto tudo devido a diversidades de apresentaçÔes fenotĂpicas, porĂ©m sempre com fragilidade Ăłssea marcantes, frouxidĂŁo cĂĄpsulo-ligamentar, esclera com a cor azulada, surdez, dentinogĂȘnese imperfeita, deformidade nos ossos longos e hiperextensibilidade articular. Devido a vasta forma de apresentação, a OI possui como diagnĂłsticos diferenciados, categorias baseadas em estĂĄgios de vida do paciente, devendo-se considerar trĂȘs estĂĄgios, prĂ©-natal/neonatal, infĂąncia e adolescĂȘncia. Por se tratar de uma condição genĂ©tica, com todos os estudos e apesar dos avanços tecnolĂłgicos, nĂŁo existe uma cura para a OI, porĂ©m existem trĂȘs formas fundamentais para tratamentos da doença, a forma terapĂȘutica, a cirĂșrgica ortopĂ©dica e a reabilitação. Todo o prognĂłstico depende da forma como a OI se apresenta, o prognĂłstico pode ser muito variĂĄvel, serĂĄ observado o grau de severidade e acompanhamento terapĂȘutico
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5â7 vast areas of the tropics remain understudied.8â11 In
the American tropics, Amazonia stands out as the worldâs most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13â15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazonâs biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the regionâs vulnerability to environmental change. 15%â18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%â18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
CatĂĄlogo TaxonĂŽmico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the CatĂĄlogo TaxonĂŽmico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%â18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5âĂâ1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1â-ârelative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23â848 participants were enrolled and 11â636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74â341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
Background
A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.
Methods
This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5âĂâ1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1â-ârelative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.
Findings
Between April 23 and Nov 4, 2020, 23â848 participants were enrolled and 11â636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0â75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4â97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8â80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74â341 person-months of safety follow-up (median 3·4 months, IQR 1·3â4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.
Interpretation
ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials