79 research outputs found

    Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning

    Full text link
    It is by now well understood that large sprite discharges at the low air densities of the mesosphere are physically similar to small streamer discharges in air at standard temperature and pressure. This similarity is based on Townsend scaling with air density. First the theoretical basis of Townsend scaling and a list of six possible corrections to scaling are discussed; then the experimental evidence for the similarity between streamers and sprites is reviewed. We then discuss how far present sprite and streamer theory has been developed, and we show how streamer experiments can be interpreted as sprite simulations. We review those results of recent streamer research that are relevant for sprites and other forms of atmospheric electricity and discuss their implications for sprite understanding. These include the large range of streamer diameters and velocities and the overall 3D morphology with branching, interaction and reconnection, the dependence on voltage and polarity, the electron energies in the streamer head and the consecutive chemical efficiency and hard radiation. New theoretical and experimental results concern measurements of streamer spectra in air, the density dependence of streamer heating (hot leaders are unlikely at 80 km altitude and cold streamers are unlikely in liquids), and a discussion of the influence of magnetic fields on thermal electrons or on energetic electrons in streamers or sprites.Comment: 38 pages, 4 figures, article accepted for publication in J. Geophys. Res. - Space Physic

    Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure

    Full text link
    International audienceThis paper presents simulations of an air plasma discharge at atmospheric pressure initiated by a needle anode set inside a dielectric capillary tube. We have studied the influence of the tube inner radius and its relative permittivity ε r on the discharge structure and dynamics. As a reference, we have used a relative permittivity ε r = 1 to study only the influence of the cylindrical constraint of the tube on the discharge. For a tube radius of 100 µm and ε r = 1, we have shown that the discharge fills the tube during its propagation and is rather homogeneous behind the discharge front. When the radius of the tube is in the range 300 to 600 µm, the discharge structure is tubular with peak values of electric field and electron density close to the dielectric surface. When the radius of the tube is larger than 700 µm, the tube has no influence on the discharge which propagates axially. For a tube radius of 100 µm, when ε r increases from 1 to 10, the discharge structure becomes tubular. We have noted that the velocity of propagation of the discharge in the tube increases when the front is more homogeneous and then, the discharge velocity increases with the decrease of the tube radius and ε r. Then, we have compared the relative influence of the value of tube radius and ε r on the discharge characteristics. Our simulations indicate that the geometrical constraint of the cylindrical tube has more influence than the value of ε r on the discharge structure and dynamics. Finally, we have studied the influence of photoemission processes on the discharge structure by varying the photoemission coefficient. As expected, we have shown that photoemission, as it increases the number of secondary electrons close to the dielectric surface, promotes the tubular structure of the discharge

    SIMULATION SUR ORDINATEUR DE LA FORMATION DE L'ARC TRANSITOIRE ENTRE UNE POINTE POSITIVE ET UN PLAN DANS L'AIR A PRESSION ATMOSPHERIQUE

    No full text
    Sous l'effet d'un front d'onde ionisant -très localisé- un filament conducteur est crée, joignant finalement les deux électrodes. Trois équations, tenant compte de l'attachement, sont proposées, décrivant l'évolution du filament. Après discussion sur la signification et la détermination des conditions aux limites, une résolution sur ordinateur permet la comparaison des courants calculés et de la distribution de lumière calculées avec l'expérience.Under the effect of a small ionizing wave front -the streamer- a conducting filament is created joining finaly both electrodes. Three equations, taking attachment into account, are proposed, describing the filament evolution. After a discussion on the meaning and the determination of the boundary conditions, a solution, given by a computer, allow a comparison between calculated currents and calculated light distribution with the experiment

    TRANSITION PRÉIONISATION-ARC, ÉTUDIÉE A L'AIDE D'UNE CAMÉRA ULTRA-RAPIDE, DANS L'AIR A PRESSION ATMOSPHÉRIQUE, EN POINTE POSITIVE-PLAN AUX COURTES DISTANCES

    No full text
    A photographic study of the luminous evolution which takes place between the streamer and the spark is presented. A breakdown criterion is proposed. The events being periodic, the influence of the residual ionization left by the preceding event on the one following is studied.Une photographie présentant l'ensemble de l'évolution lumineuse entre la descente du dard (streamer) et l'arc est présentée. Un critère de claquage est dégagé. Les phénomènes étant, périodiques, l'influence de l'ionisation résiduelle laissée par un phénomène sur le suivant est étudiée

    Activation physico-chimique par décharge couronne filamentaire

    No full text
    Motivée par de nouvelles applications dans les sciences de l'environnement et le déclenchement de la combustion, l'étude des décharges haute pression est en plein essor. Ces décharges ont la propriété de pouvoir générer des plasmas dit " non thermiques ". Dans les plasmas non-thermiques la température des électrons est très supérieure à la températures des ions et des espèces neutres. Selon le but recherché, le contrôle de la valeur du champ électrique permet ainsi de favoriser la prédominance de certaines réactions chimiques ayant pour conséquence la disparition de certaines espèces jugées néfastes et l'apparition d'autres espèces moins nocives. Pour mener à bien ces études on utilise la modélisation. Le travail a consisté à modéliser radialement l'activité physico-chimie d'une décharge couronne en configuration pointe-plan, dans l'air à pression atmosphérique. L'objectif est d'identifier les processus réactionnels dominants ainsi que les paramètres qui les influencent. Les résultats de la modélisation confirment l'existence de l'expansion adiabatique au cœur de la décharge associée à la création d'une onde de pression, dès lors que le rayon du filament de décharge est égal à celui obtenu expérimentalement c'est à dire pris dans le domaine des dizaine de micromètres. Dans ce cas le confinement du courant de décharge entraîne une densité d'énergie déposée suffisante pour induire une expansion du milieu gazeux. D'un point de vue chimique, l'accroissement de la température du gaz et la baisse de densité du gaz au cœur de la décharge qui en résulte, modifie de façon substantielle les constantes d'Arrhenius gouvernant les réactions entre espèces lourdes et le rapport champ électrique sur densité E/N, qui défini l'activité de dissociation et d'excitation des électrons. Par ailleurs, la prise en compte du confinement des électrons par la charge d'espace positive existant à la surface du filament, induit un resserrement de l'activité dans la zone axiale ainsi qu'un accroissement de cette activité. On peut identifier trois phase dans les processus chimiques induits. Un choc rapide, du au passage du streamer. Une activité induite dans le filament de plasma sur quelques centaines de nanosecondes. Et enfin, une longue phase d'activité chimique, consécutive à la présence des radicaux et des espèces excitées laissés par les deux phases précédentes.Different types of non-thermal plasmas can be generated by the so-called streamer discharge. They all belong to a class of discharges presenting filamentary structures. The term "streamer" refers to the very tiny ionization wave, based on electron avalanches sustained by a high, and confined, space-charge field. The wave propagates rapidly, at some 10^7 cm/s, and leaves, behind it, a filamentary plasma. At this stage, the produced filamentary plasma is in a non-thermal state, with an electron temperature much larger than that of the gas or the ions. The "streamer" is the smallest, but the leading part of the discharge at the end (the head) of the filament, and due to that, is sometimes called improperly "streamer head". For gaps in the centimetric range, the streamer can cross the gap, and set a conductive filamentary plasma between the two electrodes. In view of keeping the non-thermal state of the filamentary plasma, the transition to spark must be avoided. One way is to use a highly stressed electrode, with a small radius. In such case, no spark occurs within a certain potential range. If the potential is large and leads normally to a spark, then a control of the current growth can be applied with an appropriate external circuit. Another way is to use a dielectric material set between the electrodes. In such case an alternating applied potential must be used to allow a permanent plasma maintenance. The so-called DBD technique (dielectric barrier discharge), based on such arrangement, develops extended high pressure plasmas made of sets of filamentary discharges simultaneously mixed with homogeneous glow discharge regime. The formation of these filaments has been shown to be similar to the streamer filament formation. Thus, a great variety of high pressure plasmas are based on streamer build-up. To study these filamentary plasma structures, one approach is to isolate one filamentary discharge by using a positive point-to-plane gap, near atmospheric pressure, and activating it by positive, continuous or pulsed, applied potential. The starting streamer position, in such manner, is well defined near the positive point, and even the filamentary plasma is situated near the gap axis for continuous applied potential, and thus the plasma growth and properties can be better grasped.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF
    • …
    corecore