97 research outputs found

    Activation of tyrosine kinases by mutation of the gatekeeper threonine.

    Get PDF
    Protein kinases targeted by small-molecule inhibitors develop resistance through mutation of the gatekeeper threonine residue of the active site. Here we show that the gatekeeper mutation in the cellular forms of c-ABL, c-SRC, platelet-derived growth factor receptor-alpha and -beta, and epidermal growth factor receptor activates the kinase and promotes malignant transformation of BaF3 cells. Structural analysis reveals that a network of hydrophobic interactions-the hydrophobic spine-characteristic of the active kinase conformation is stabilized by the gatekeeper substitution. Substitution of glycine for the residues constituting the spine disrupts the hydrophobic connectivity and inactivates the kinase. Furthermore, a small-molecule inhibitor that maximizes complementarity with the dismantled spine (compound 14) inhibits the gatekeeper mutation of BCR-ABL-T315I. These results demonstrate that mutation of the gatekeeper threonine is a common mechanism of activation for tyrosine kinases and provide structural insights to guide the development of next-generation inhibitors

    R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal

    Get PDF
    RPE65 is a retinal pigment epithelial protein essential for the regeneration of 11-cis-retinal, the chromophore of cone and rod visual pigments. Mutations in RPE65 lead to a spectrum of retinal dystrophies ranging from Leber's congenital amaurosis to autosomal recessive retinitis pigmentosa. One of the most frequent missense mutations is an amino acid substitution at position 91 (R91W). Affected patients have useful cone vision in the first decade of life, but progressively lose sight during adolescence. We generated R91W knock-in mice to understand the mechanism of retinal degeneration caused by this aberrant Rpe65 variant. We found that in contrast to Rpe65 null mice, low but substantial levels of both RPE65 and 11-cis-retinal were present. Whereas rod function was impaired already in young animals, cone function was less affected. Rhodopsin metabolism and photoreceptor morphology were disturbed, leading to a progressive loss of photoreceptor cells and retinal function. Thus, the consequences of the R91W mutation are clearly distinguishable from an Rpe65 null mutation as evidenced by the production of 11-cis-retinal and rhodopsin as well as by less severe morphological and functional disturbances at early age. Taken together, the pathology in R91W knock-in mice mimics many aspects of the corresponding human blinding disease. Therefore, this mouse mutant provides a valuable animal model to test therapeutic concepts for patients affected by RPE65 missense mutation

    In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death

    Get PDF
    RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rod

    IRE1β negatively regulates IRE1α signaling in response to endoplasmic reticulum stress

    Get PDF
    IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host–environment interface

    Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance

    Get PDF
    Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD

    Supplementary guidance: listening to staff: Autumn 2017

    Get PDF
    Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 μg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene

    Predictors of response to intra-arterial vasodilatory therapy of non-occlusive mesenteric ischemia in patients with severe shock: results from a prospective observational study

    Full text link
    Background: Non-occlusive mesenteric ischemia (NOMI) is a life-threatening condition occurring in patients with shock and is characterized by vasoconstriction of the mesenteric arteries leading to intestinal ischemia and multi-organ failure. Although minimal invasive local intra-arterial infusion of vasodilators into the mesenteric circulation has been suggested as a therapeutic option in NOMI, current knowledge is based on retrospective case series and it remains unclear which patients might benefit. Here, we prospectively analyzed predictors of response to intra-arterial therapy in patients with NOMI. Methods: This is a prospective single-center observational study to analyze improvement of ischemia (indicated by reduction of blood lactate > 2 mmol/l from baseline after 24 h, primary endpoint) and 28-day mortality (key secondary endpoint) in patients with NOMI undergoing intra-arterial vasodilatory therapy. Predictors of response to therapy concerning primary and key secondary endpoint were identified using a) clinical parameters as well as b) data from 2D-perfusion angiography and c) experimental biomarkers of intestinal injury. Results: A total of 42 patients were included into this study. At inclusion patients had severe shock, indicated by high doses of norepinephrine (NE) (median (interquartile range (IQR)) 0.37 (0.21-0.60) μg/kg/min), elevated lactate concentrations (9.2 (5.2-13) mmol/l) and multi-organ failure. Patients showed a continuous reduction of lactate following intra-arterial prostaglandin infusion (baseline: (9.2 (5.2-13) mmol/l vs. 24 h: 4.4 (2.5-9.1) mmol/l, p 2 mmol/l at 24 h following intervention. Initial higher lactate concentrations and lower NE doses at baseline were independent predictors of an improvement of ischemia. 28-day mortality was 59% in patients with a reduction of lactate > 2 mmol/l 24 h after inclusion, while it was 85% in all other patients (hazard ratio 0.409; 95% CI, 0.14-0.631, p = 0.005). Conclusions: A reduction of lactate concentrations was observed following implementation of intra-arterial therapy, and lactate reduction was associated with better survival. Our findings concerning outcome predictors in NOMI patients undergoing intra-arterial prostaglandin therapy might help designing a randomized controlled trial to further investigate this therapeutic approach. Trial registration Retrospectively registered on January 22, 2020, at clinicaltrials.gov (REPERFUSE, NCT04235634), https://clinicaltrials.gov/ct2/show/NCT04235634?cond=NOMI&draw=2&rank=1 . Keywords: Intestinal failure; Non-occlusive mesenteric ischemia; Sepsis; Shoc

    Altered fibrin clot structure and dysregulated fibrinolysis contribute to thrombosis risk in severe COVID-19

    Full text link
    The high incidence of thrombotic events suggests a possible role of the contact system pathway in COVID-19 pathology. Here, we demonstrate altered levels of factor XII (FXII) and its activation products in critically ill COVID-19 patients in comparison to patients with severe acute respiratory distress syndrome due to influenza virus (ARDS-influenza). Compatible with this data, we report rapid consumption of FXII in COVID-19, but not in ARDS-influenza, plasma. Interestingly, the lag phase in fibrin formation, triggered by the FXII activator kaolin, was not prolonged in COVID-19 as opposed to ARDS-influenza. Using confocal and electron microscopy, we showed that increased FXII activation rate, in conjunction with elevated fibrinogen levels, triggers formation of fibrinolysis-resistant, compact clots with thin fibers and small pores in COVID-19. Accordingly, clot lysis was markedly impaired in COVID-19 as opposed to ARDS-infleunza subjects. Dysregulatated fibrinolytic system, as evidenced by elevated levels of thrombin-activatable fibrinolysis inhibitor, tissue-plasminogen activator, and plasminogen activator inhibitor-1 in COVID-19 potentiated this effect. Analysis of lung tissue sections revealed wide-spread extra- and intra-vascular compact fibrin deposits in COVID-19 patients. Together, compact fibrin network structure and dysregulated fibrinolysis may collectively contribute to high incidence of thrombotic events in COVID-19
    corecore