54 research outputs found
The diversity and evolution of chelicerate hemocyanins
<p>Abstract</p> <p>Background</p> <p>Oxygen transport in the hemolymph of many arthropod species is facilitated by large copper-proteins referred to as hemocyanins. Arthropod hemocyanins are hexamers or oligomers of hexamers, which are characterized by a high O<sub>2 </sub>transport capacity and a high cooperativity, thereby enhancing O<sub>2 </sub>supply. Hemocyanin subunit sequences had been available from horseshoe crabs (Xiphosura) and various spiders (Araneae), but not from any other chelicerate taxon. To trace the evolution of hemocyanins and the emergence of the large hemocyanin oligomers, hemocyanin cDNA sequences were obtained from representatives of selected chelicerate classes.</p> <p>Results</p> <p>Hemocyanin subunits from a sea spider, a scorpion, a whip scorpion and a whip spider were sequenced. Hemocyanin has been lost in Opiliones, Pseudoscorpiones, Solifugae and Acari, which may be explained by the evolution of trachea (i.e., taxon Apulmonata). Bayesian phylogenetic analysis was used to reconstruct the evolution of hemocyanin subunits and a relaxed molecular clock approach was applied to date the major events. While the sea spider has a simple hexameric hemocyanin, four distinct subunit types evolved before Xiphosura and Arachnida diverged around 470 Ma ago, suggesting the existence of a 4 × 6mer at that time. Subsequently, independent gene duplication events gave rise to the other distinct subunits in each of the 8 × 6mer hemocyanin of Xiphosura and the 4 × 6mer of Arachnida. The hemocyanin sequences were used to infer the evolutionary history of chelicerates. The phylogenetic trees support a basal position of Pycnogonida, a sister group relationship of Xiphosura and Arachnida, and a sister group relationship of the whip scorpions and the whip spiders.</p> <p>Conclusion</p> <p>Formation of a complex hemocyanin oligomer commenced early in the evolution of euchelicerates. A 4 × 6mer hemocyanin consisting of seven subunit types is conserved in most arachnids since more than 400 Ma, although some entelegyne spiders display selective subunit loss and independent oligomerization. Hemocyanins also turned out to be a good marker to trace chelicerate evolution, which is, however, limited by the loss of hemocyanin in some taxa. The molecular clock calculations were in excellent agreement with the fossil record, also demonstrating the applicability of hemocyanins for such approach.</p
Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation (Extended Version)
Sensor data streams occur widely in various real-time applications in the
context of the Internet of Things (IoT). However, sensor data streams feature
missing values due to factors such as sensor failures, communication errors, or
depleted batteries. Missing values can compromise the quality of real-time
analytics tasks and downstream applications. Existing imputation methods either
make strong assumptions about streams or have low efficiency. In this study, we
aim to accurately and efficiently impute missing values in data streams that
satisfy only general characteristics in order to benefit real-time applications
more widely. First, we propose a message propagation imputation network (MPIN)
that is able to recover the missing values of data instances in a time window.
We give a theoretical analysis of why MPIN is effective. Second, we present a
continuous imputation framework that consists of data update and model update
mechanisms to enable MPIN to perform continuous imputation both effectively and
efficiently. Extensive experiments on multiple real datasets show that MPIN can
outperform the existing data imputers by wide margins and that the continuous
imputation framework is efficient and accurate.Comment: Accepted at VLDB 202
Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation
Aneurysm formation is a life-threatening complication after operative therapy in coarctation. The identification of patients at risk for the development of such secondary pathologies is of high interest and requires a detailed understanding of the link between vascular malformation and altered hemodynamics. The routine morphometric follow-up by magnetic resonance angiography is a well-established technique. However, the intrinsic sensitivity of magnetic resonance (MR) towards motion offers the possibility to additionally investigate hemodynamic consequences of morphological changes of the aorta
IoT-PMA: Patient Health Monitoring in Medical IoT Ecosystems
The emergence of the Internet of Things (IoT) and the increasing number of cheap medical devices enable geographically distributed healthcare ecosystems of various stakeholders. Such ecosystems contain different application scenarios, e.g., (mobile) patient monitoring using various vital parameters such as heart rate signals. The increasing number of data producers and the transfer of data between medical stakeholders introduce several challenges to the data processing environment, e.g., heterogeneity and distribution of computing and data, lowlatency processing, as well as data security and privacy. Current approaches propose cloud-based solutions introducing latency bottlenecks and high risks for companies dealing with sensitive patient data. In this paper, we address the challenges of medical IoT applications by proposing an end-to-end patient monitoring application that includes NebulaStream as the data processing system, an easy-to-use UI that provides ad-hoc views on the available vital parameters, and the integration of ML models to enable predictions on the patients' health state. Using our end-to-end solution, we implement a real-world patient monitoring scenario for hemodynamic and pulmonary decompensations, which are dynamic and life-threatening deteriorations of lung and cardiovascular functions. Our application provides ad-hoc views of the vital parameters and derived decompensation severity scores with continuous updates on the latest data readings to support timely decision-making by physicians. Furthermore, we envision the infrastructure of an IoT ecosystem for a multi-hospital scenario that enables geo-distributed medical participants to contribute data to the application in a secure, private, and timely manner
Metallfreie intermolekulare C-H-Borylierung von N-Heterocyclen an B-B-Mehrfachbindungen
Carbenstabilisierte Diborine der Form LBBL (L=N-heterocyclisches Carben (NHC) oder cyclisches Alkyl(amino)carben (CAAC)) induzieren bei Raumtemperatur eine schnelle, ertragreiche, intermolekulare ortho-C-H-Borylierung an N-Heterocyclen. Ein einfaches Pyridyldiboren wird gebildet, wenn ein NHC-stabilisiertes Diborin mit Pyridin kombiniert wird, während ein CAAC-stabilisiertes Diborin zur Aktivierung von zwei Pyridinmolekülen führt, um ein tricyclisches Alkylidenboran zu bilden, das durch Erhitzen zu einem zwitterionischen, zweifach benzokondensierten 1,3,2,5-Diazadiborinin mittels einer weiteren H-Verschiebung umgelagert werden kann. Die Verwendung des verlängerten N-heteroaromatischen Chinolins führt unter milden Bedingungen über einen bisher unbekannten Bor-Kohlenstoff-Austauschprozess zu einem Borylmethylenboran
Metal-Free Intermolecular C–H Borylation of N-Heterocycles at B–B Multiple Bonds
Carbene-stabilized diborynes of the form LBBL (L = NHC or CAAC) induce rapid, high yielding, intermolecular ortho-C–H borylation at N-heterocycles at room temperature. A simple pyridyldiborene is formed when an NHC-stabilized diboryne is combined with pyridine, while a CAAC-stabilized diboryne leads to activation of two pyridine molecules to give a tricyclic alkylideneborane, which can be forced to undergo a further H-shift resulting in a zwitterionic, doubly benzo-fused 1,3,2,5-diazadiborinine by heating. Use of the extended N-heteroaromatic quinoline leads to a borylmethyleneborane under mild conditions via an unprecedented boron-carbon exchange process
Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation
The enzymatic activity of phenoloxidase is assayed routinely in the presence of SDS. Similar assay conditions elicit phenoloxidase activity in another type 3 copper protein, namely hemocyanin, which normally functions as an oxygen carrier. The nature of the conformational changes induced in type 3 copper proteins by the denaturant SDS is unknown. This comparative study demonstrates that arthropod hemocyanins can be converted from being an oxygen carrier to a form which exhibits phenoloxidase activity by incubation with SDS, with accompanying changes in secondary and tertiary structure. Structural characterisation, using various biophysical methods, suggests that the micellar form of SDS is required to induce optimal conformational transitions in the protein which may result in opening a channel to the di-copper centre allowing bulky phenolic substrates access to the catalytic site
Quantification in cardiac MRI: advances in image acquisition and processing
Cardiac magnetic resonance (CMR) imaging enables accurate and reproducible quantification of measurements of global and regional ventricular function, blood flow, perfusion at rest and stress as well as myocardial injury. Recent advances in MR hardware and software have resulted in significant improvements in image quality and a reduction in imaging time. Methods for automated and robust assessment of the parameters of cardiac function, blood flow and morphology are being developed. This article reviews the recent advances in image acquisition and quantitative image analysis in CMR
- …