65 research outputs found

    Propagation and kinetic roughening of wave fronts in disordered lattices

    Get PDF
    The dynamics of a wave front propagating in diluted square lattices of elastic beams is analyzed. We concentrate on the propagation of the first maximum of a semi-infinite wave train. Two different limits are found for the velocity depending on the bending stiffness of the beams. If it vanishes, a one-dimensional chain model is derived for the velocity and the amplitude is found to decrease exponentially. The first maximum is localized and the average width of the wave front is always finite. For very stiff beams an effective-medium model gives the correct velocity and the amplitude of the first maximum decays according to a power law. No localization of the first maximum is observed in the simulations. In this limit scaling arguments based on Huygen’s principle suggest a growth exponent of 1/2, and a roughness exponent of 2/3. The growth exponent fits the simulation data well, but a considerably lower roughness exponent (0.5) is obtained. There is a crossover region for the bending stiffness, wherein the wave-front behavior cannot be explained by these limiting cases.Peer reviewe

    Smoking and suicidality among adolescent psychiatric patients

    Get PDF
    Purpose: To investigate the relationship between smoking and suicidality among adolescent psychiatric patients in Finland. Methods: Data from 157 patients (aged 12-17 years) admitted to inpatient psychiatric hospitalization between April 2001 and July 2002 were collected. Logistic regression analyses were used to examine the association between regular daily smoking and suicidality. The data were adjusted for several sociodemographic and clinical characteristics. Results: The results showed over four-fold risk for definite and/or life-threatening suicide attempts among smoking adolescents in inpatient psychiatric facility compared with nonsmoking ones (OR 4.33, 95% CI 1.23-15.20). Also, the smoking adolescents had three times greater risk for occasional (OR 3.32, 95% CI 1.09-10.10) or frequent (OR 3.00, 95% CI 1.08-10.10) self-mutilation. Suicidality was more common among girls than boys and among those adolescents who suffered from depression. Conclusions: Among teens hospitalized for psychiatric illnesses, daily smoking was significantly related to suicide attempts and self-mutilation, even after controlling for several confounding factors, including psychiatric diagnosis. (C) Society for Adolescent Medicine, 2004.Peer reviewe

    Recurrent transitions to Little Ice Age-like climatic regimes over the Holocene

    Get PDF
    Holocene climate variability is punctuated by episodic climatic events such as the Little Ice Age (LIA) predating the industrial-era warming. Their dating and forcing mechanisms have however remained controversial. Even more crucially, it is uncertain whether earlier events represent climatic regimes similar to the LIA. Here we produce and analyse a new 7500-year long palaeoclimate record tailored to detect LIA-like climatic regimes from northern European tree-ring data. In addition to the actual LIA, we identify LIA-like ca. 100-800 year periods with cold temperatures combined with clear sky conditions from 540 CE, 1670 BCE, 3240 BCE and 5450 BCE onwards, these LIA-like regimes covering 20% of the study period. Consistent with climate modelling, the LIA-like regimes originate from a coupled atmosphere-ocean-sea ice North Atlantic-Arctic system and were amplified by volcanic activity (multiple eruptions closely spaced in time), tree-ring evidence pointing to similarly enhanced LIA-like regimes starting after the eruptions recorded in 1627 BCE, 536/540 CE and 1809/1815 CE. Conversely, the ongoing decline in Arctic sea-ice extent is mirrored in our data which shows reversal of the LIA-like conditions since the late nineteenth century, our record also correlating highly with the instrumentally recorded Northern Hemisphere and global temperatures over the same period. Our results bridge the gaps between low- and high-resolution, precisely dated proxies and demonstrate the efficacy of slow and fast components of the climate system to generate LIA-like climate regimes.Peer reviewe

    Source apportionment of particle number size distribution in urban background and traffic stations in four European cities

    Get PDF
    Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic – mode diameter between 13 and 37 nm, and Urban – mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich. These cities are characterised by different meteorological conditions and emissions. The common sources across all stations were Photonucleation, traffic emissions (3 sources, from fresh to aged emissions: Traffic nucleation, Fresh traffic - mode diameter between 13 and 37 nm, and Urban - mode diameter between 44 and 81 nm, mainly traffic but influenced by other sources in some cities), and Secondary particles. The Photonucleation factor was only directly identified by PMF for Barcelona, while an additional split of the Nucleation factor (into Photonucleation and Traffic nucleation) by using NOx concentrations as a proxy for traffic emissions was performed for all other stations. The sum of all traffic sources resulted in a maximum relative contributions ranging from 71 to 94% (annual average) thereby being the main contributor at all stations. In London and Zurich, the relative contribution of the sources did not vary significantly between seasons. In contrast, the high levels of solar radiation in Barcelona led to an important contribution of Photonucleation particles (ranging from 14% during the winter period to 35% during summer). Biogenic emissions were a source identified only in Helsinki (both in the urban background and street canyon stations), that contributed importantly during summer (23% in urban background). Airport emissions contributed to Nucleation particles at urban background sites, as the highest concentrations of this source took place when the wind was blowing from the airport direction in all cities.Peer reviewe

    The interplay between inflammatory cytokines and cardiometabolic disease: bi-directional mendelian randomisation study

    Get PDF
    Objective To leverage large scale genetic association data to investigate the interplay between circulating cytokines and cardiometabolic traits, and thus identifying potential therapeutic targets. Design Bi-directional Mendelian randomisation study. Setting Genome-wide association studies from three Finnish cohorts (Northern Finland Birth Cohort 1966, Young Finns Study, or FINRISK study), and genetic association summary statistics pooled from observational studies for expression quantitative trait loci and cardiometabolic traits. Participants Data for 47 circulating cytokines in 13 365 individuals from genome-wide association studies, summary statistic data for up to 21 735 individuals on circulating cytokines, summary statistic gene expression data across 49 tissues in 838 individuals, and summary statistic data for up to 1 320 016 individuals on cardiometabolic traits. Interventions Relations between circulating cytokines and cardiovascular, anthropometric, lipid, or glycaemic traits (coronary artery disease, stroke, type 2 diabetes mellitus, body mass index, waist circumference, waist to hip ratio, systolic blood pressure, glycated haemoglobin, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, triglycerides, C reactive protein, glucose, fasting insulin, and lifetime smoking). Main outcome methods Genetic instrumental variables that are biologically plausible for the circulating cytokines were generated. The effects of cardiometabolic risk factors on concentrations of circulating cytokines, circulating cytokines on other circulating cytokines, and circulating cytokines on cardiometabolic outcomes were investigated. Results Genetic evidence (mendelian randomisation P0.5) suggested that coronary artery disease risk is increased by higher concentrations of circulating tumour necrosis factor related apoptosis-inducing ligand (TRAIL), interleukin-1 receptor antagonist (IL1RA), and macrophage colony-stimulating factor (MCSF). Conclusion This study offers insight into inflammatory mediators of cardiometabolic risk factors, cytokine signalling cascades, and effects of circulating cytokines on different cardiometabolic outcomes

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch programme is gratefully acknowledged for initiating and coordinating this study and for supporting this publication. We acknowledge the following projects for supporting the analysis contained in this article: Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1; Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein. This project has received funding from the European Commission’s Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project). European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Estonian Research Council (project PRG714); Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (KKOBS, project 2014-2020.4.01.20-0281). European network for observing our changing planet project (ERAPLANET, grant agreement no. 689443) under the European Union’s Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395). Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus. INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to data used in our analysis: A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Agenzia Regionale per la Protezione dell’Ambiente della Campania (ARPAC); Air Quality and Climate Change, Parks and Environment (MetroVancouver, Government of British Columbia); Air Quality Monitoring & Reporting, Nova Scotia Environment (Government of Nova Scotia); Air Quality Monitoring Network (SIMAT) and Emission Inventory, Mexico City Environment Secretariat (SEDEMA); Airparif (owner & provider of the Paris air pollution data); ARPA Lazio, Italy; ARPA Lombardia, Italy; Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de- France AIRPARIF / Atmo-France; Bavarian Environment Agency, Germany; Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, Germany; California Air Resources Board; Central Pollution Control Board (CPCB), India; CETESB: Companhia Ambiental do Estado de S˜ao Paulo, Brazil. China National Environmental Monitoring Centre; Chandigarh Pollution Control Committee (CPCC), India. DCMR Rijnmond Environmental Service, the Netherlands. Department of Labour Inspection, Cyprus; Department of Natural Resources Management and Environmental Protection of Moscow. Environment and Climate Change Canada; Environmental Monitoring and Science Division Alberta Environment and Parks (Government of Alberta); Environmental Protection Authority Victoria (Melbourne, Victoria, Australia); Estonian Environmental Research Centre (EERC); Estonian University of Life Sciences, SMEAR Estonia; European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Finnish Meteorological Institute; Helsinki Region Environmental Services Authority; Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government; Madrid Municipality; Met Office Integrated Data Archive System (MIDAS); Meteorological Service of Canada; Minist`ere de l’Environnement et de la Lutte contre les changements climatiques (Gouvernement du Qu´ebec); Ministry of Environment and Energy, Greece; Ministry of the Environment (Chile) and National Weather Service (DMC); Moscow State Budgetary Environmental Institution MOSECOMONITORING. Municipal Department of the Environment SMAC, Brazil; Municipality of Madrid public open data service; National institute of environmental research, Korea; National Meteorology and Hydrology Service (SENAMHI), Peru; New York State Department of Environmental Conservation; NSW Department of Planning, Industry and Environment; Ontario Ministry of the Environment, Conservation and Parks, Canada; Public Health Service of Amsterdam (GGD), the Netherlands. Punjab Pollution Control Board (PPCB), India. R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal); Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics, Russia; Russian Foundation for Basic Research (project 20–05–00254) SAFAR-IITM-MoES, India; S˜ao Paulo State Environmental Protection Agency, CETESB; Secretaria de Ambiente, DMQ, Ecuador; Secretaría Distrital de Ambiente, Bogot´a, Colombia. Secretaria Municipal de Meio Ambiente Rio de Janeiro; Mexico City Atmospheric Monitoring System (SIMAT); Mexico City Secretariat of Environment, Secretaría del Medio Ambiente (SEDEMA); SLB-analys, Sweden; SMEAR Estonia station and Estonian University of Life Sciences (EULS); SMEAR stations data and Finnish Center of Excellence; South African Weather Service and Department of Environment, Forestry and Fisheries through SAAQIS; Spanish Ministry for the Ecological Transition and the Demographic Challenge (MITECO); University of Helsinki, Finland; University of Tartu, Tahkuse air monitoring station; Weather Station of the Institute of Astronomy, Geophysics and Atmospheric Science of the University of S˜ao Paulo; West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog
    • …
    corecore