71 research outputs found

    Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy

    Get PDF
    The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this “immunological paradox”, as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells

    Approaching the uncultured endosymbiont of Riftia pachyptila by physiological proteomics

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of AAAS for personal use, not for redistribution. The definitive version was published in Science 315 (2007): 247-250, doi:10.1126/science.1132913.The bacterial endosymbiont of the deep-sea tube worm Riftia pachyptila has never been successfully cultivated outside its host. In the absence of cultivation data we have taken a proteomic approach based on the metagenome sequence to study the metabolism of this peculiar microorganism in detail. As one result, we found that three major sulfide oxidation proteins constitute ~12% of the total cytosolic proteome, highlighting the essential role of these enzymes for the symbiont’s energy metabolism. Unexpectedly, the symbiont uses the reductive tricarboxylic acid (TCA) cycle in addition to the previously identified Calvin cycle for CO2 fixation.This work was supported by the DFG, grant Schw595/3-1. Other funding sources were: NSF (OCE 04-52333) and NASA Astrobiology Institute (NNA04CC04A) for SMS, MH: postdoctoral scholarship from WHOI, HF: Academic Senate (RF811S and RE518S)

    Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hinzke, T., Kleiner, M., Meister, M., Schlueter, R., Hentschker, C., Pane-Farre, J., Hildebrandt, P., Felbeck, H., Sievert, S. M., Bonn, F., Voelker, U., Becher, D., Schweder, T., & Markert, S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. Elife, 10, (2021): e58371, https://doi.org/10.7554/eLife.58371.The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.This work was supported by the German Research Foundation DFG (grant MA 6346/2–1 to SM), fellowships of the Institute of Marine Biotechnology Greifswald (TH, MM), a German Academic Exchange Service (DAAD) grant (TH), the NC State Chancellor’s Faculty Excellence Program Cluster on Microbiomes and Complex Microbial Communities (MK), the USDA National Institute of Food and Agriculture, Hatch project 1014212 (MK), the U.S. National Science Foundation (grants OCE-1131095 and OCE-1559198 to SMS), and The WHOI Investment in Science Fund (to SMS). We furthermore acknowledge support for article processing charges from the DFG (Grant 393148499) and the Open Access Publication Fund of the University of Greifswald

    Host-Microbe Interactions in the Chemosynthetic Riftia pachyptila Symbiosis

    Get PDF
    The deep-sea tubeworm Riftia pachyptila lacks a digestive system but completely relies on bacterial endosymbionts for nutrition. Although the symbiont has been studied in detail on the molecular level, such analyses were unavailable for the animal host, because sequence information was lacking. To identify host-symbiont interaction mechanisms, we therefore sequenced the Riftia transcriptome, which served as a basis for comparative metaproteomic analyses of symbiont-containing versus symbiont-free tissues, both under energy-rich and energy-limited conditions. Our results suggest that metabolic interactions include nutrient allocation from symbiont to host by symbiont digestion and substrate transfer to the symbiont by abundant host proteins. We furthermore propose that Riftia maintains its symbiont by protecting the bacteria from oxidative damage while also exerting symbiont population control. Eukaryote-like symbiont proteins might facilitate intracellular symbiont persistence. Energy limitation apparently leads to reduced symbiont biomass and increased symbiont digestion. Our study provides unprecedented insights into host-microbe interactions that shape this highly efficient symbiosis

    Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces

    Get PDF
    Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm’s Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development

    Anaerobic sulfur oxidation underlies adaptation of a chemosynthetic symbiont to oxic-anoxic interfaces

    Get PDF
    Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on “Candidatus Thiosymbion oneisti.” Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of (13)C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that “Ca. T. oneisti” may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of “Candidatus Thiosymbion oneisti,” a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont

    A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion

    Get PDF
    Highlights: ‱ Sponges, evolutionary basal animals, represent a reservoir of novel viral diversity ‱ Viromes of neighboring sponges are individually unique and species specific ‱ Phages encode ankyrins to aid bacteria in evading the eukaryotic immune system ‱ Such “Ankyphages” are widespread in host-associated environments, including humans Summary: Phages are increasingly recognized as important members of host-associated microbiomes, with a vast genomic diversity. The new frontier is to understand how phages may affect higher order processes, such as in the context of host-microbe interactions. Here, we use marine sponges as a model to investigate the interplay between phages, bacterial symbionts, and eukaryotic hosts. Using viral metagenomics, we find that sponges, although massively filtering seawater, harbor species-specific and even individually unique viral signatures that are taxonomically distinct from other environments. We further discover a symbiont phage-encoded ankyrin-domain-containing protein, which is widely spread in phages of many host-associated contexts including human. We confirm in macrophage infection assays that the ankyrin protein (ANKp) modulates the eukaryotic host immune response against bacteria. We predict that the role of ANKp in nature is to facilitate coexistence in the tripartite interplay between phages, symbionts, and sponges and possibly many other host-microbe associations

    Microbial metal-sulfide oxidation in inactive hydrothermal vent chimneys suggested by metagenomic and metaproteomic analyses

    Get PDF
    Metal-sulfides are wide-spread in marine benthic habitats. At deep-sea hydrothermal vents, they occur as massive sulfide chimneys formed by mineral precipitation upon mixing of reduced vent fluids with cold oxygenated sea water. Although microorganisms inhabiting actively venting chimneys and utilizing compounds supplied by the venting fluids are well studied, only little is known about microorganisms inhabiting inactive chimneys. In this study, we combined 16S rRNA gene-based community profiling of sulfide chimneys from the Manus Basin (SW Pacific) with radiometric dating, metagenome (n = 4) and metaproteome (n = 1) analyses. Our results shed light on potential lifestyles of yet poorly characterized bacterial clades colonizing inactive chimneys. These include sulfate-reducing Nitrospirae and sulfide-oxidizing Gammaproteobacteria dominating most of the inactive chimney communities. Our phylogenetic analysis attributed the gammaproteobacterial clades to the recently described Woeseiaceae family and the SSr-clade found in marine sediments around the world. Metaproteomic data identified these Gammaproteobacteria as autotrophic sulfide-oxidizers potentially facilitating metal-sulfide dissolution via extracellular electron transfer. Considering the wide distribution of these gammaproteobacterial clades in marine environments such as hydrothermal vents and sediments, microbially accelerated neutrophilic mineral oxidation might be a globally relevant process in benthic element cycling and a considerable energy source for carbon fixation in marine benthic habitat
    • 

    corecore