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5Institut de Ciències del Mar-CSIC, 08003 Barcelona, Spain
6Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
7Lead Contact

*Correspondence: mjahn@geomar.de (M.T.J.), uhentschel@geomar.de (U.H.)

https://doi.org/10.1016/j.chom.2019.08.019
SUMMARY

Phages are increasingly recognized as important
members of host-associated microbiomes, with a
vast genomic diversity. The new frontier is to under-
stand how phages may affect higher order pro-
cesses, such as in the context of host-microbe
interactions. Here, we use marine sponges as a
model to investigate the interplay between phages,
bacterial symbionts, and eukaryotic hosts. Using
viral metagenomics, we find that sponges, although
massively filtering seawater, harbor species-specific
and even individually unique viral signatures that are
taxonomically distinct from other environments. We
further discover a symbiont phage-encoded an-
kyrin-domain-containing protein, which is widely
spread in phages of many host-associated contexts
including human. We confirm in macrophage infec-
tion assays that the ankyrin protein (ANKp) modu-
lates the eukaryotic host immune response against
bacteria. We predict that the role of ANKp in nature
is to facilitate coexistence in the tripartite interplay
between phages, symbionts, and sponges and
possibly many other host-microbe associations.

INTRODUCTION

Phages are the most abundant and diverse entities in the oceans

(Gregory et al., 2019; Rohwer, 2003; Wommack and Colwell,

2000) and, along with their role as major bacterial killers, signifi-

cantly impact global biochemical cycles (Breitbart et al., 2018;

Suttle, 2007), bacterial fitness, and diversity (Betts et al., 2018;

Marston et al., 2012). A plethora of fine-tuned defense and

counter-defense mechanisms and lysogenic conversion factors

have been discovered through research focusing on phage-bac-

teria interactions (Barrangou et al., 2007; Kronheim et al., 2018).

Importantly, however, in host-associated microbial communities,

a third player, the eukaryotic host, not only sets the stage but may
C

also interactwith bothother parties in its own interest. Surprisingly

little is, however, known about the tripartite interaction between

phages, their bacterial hosts, and the animals that harbor the mi-

crobial communities (Barr et al., 2013; Keen and Dantas, 2018).

Marine sponges and their dense and diverse microbial

symbiont communities are attractive models for the study of

host-microbe-phage interactions (Thomas et al., 2016). As fil-

ter-feeding animals, sponges pump up to 24,000 liters of

seawater through their system per day (Weisz et al., 2008),

exposing them to up to an estimated �2.4 3 1013 viruses daily.

Interestingly, defense mechanisms (e.g., restriction modification

and CRISPR-Cas) to selfish genetic elements (e.g., phages and

plasmids) are clearly enriched in sponge symbiont genomes

(Horn et al., 2016; Podell et al., 2019; Slaby et al., 2017).

While these features indicate phage resistance of bacterial

sponge symbionts, the beneficial effects of phages on the

sponge microbial community are largely unexplored. The first

and only other sponge virome sequencing approach revealed

species-specific viral signatures in Great Barrier Reef sponges,

which shared low identity to known viral genomes (Laffy et al.,

2018). Here, we generated nested viromes from Mediterranean

sponges and identified specialized phage taxa and host-en-

riched phage functions. Importantly, we discovered and ex-

pressed an immunomodulatory phage protein that critically

alters microbe-eukaryote interactions with potential implications

in sponges and many other systems.

RESULTS

High Diversity and Novelty in Marine Sponge Viromes
We report the metagenomic analysis of marine sponge viromes

that were sampled to cover the levels of sponge species,

sponge individuals, and sponge tissues (outer layer ‘‘pinaco-

derm’’ and inner tissue ‘‘mesohyl matrix’’). Viruses from nearby

seawater, collected in immediate vicinity and at the same

time, were used as controls. With 142 Gbp of sequencing data

from 32 sponges (two tissues 3 4 individuals 3 4 species) and

4 seawater reference viromes, this represents the deepest

sequencing effort performed on sponge viruses to date. The final

assembly contained 4,484 curated viral contigs representing

population-level genomes (R5 kb, hereafter termed ‘‘BCvir’’
ell Host & Microbe 26, 1–9, October 9, 2019 ª 2019 Elsevier Inc. 1
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Figure 1. Diversity of Sponge Viruses in Relation to Known Viral Sequence Space

(A) The gene-sharing network associates identified sponge viral clusters in this study (VCs, green ovals) with a database of viral genomes that includes (i)

assembled contigs from 130 marine viromes, (ii) the ActinophageDB, and (iii) ViralRefseq (black). Further, VCs containing the 5 most taxonomically assigned

sponge viral genomes are highlighted. Network nodes are viral genomes and edges are significant similarities between them based on shared gene content. VCs

with at least 5 genomes are shown (see detailed network statistics in Table S2 and raw data in Data S1).

(B) The matrix layout shows the number of VCs that are exclusive (one circle) or shared (multiple circles) between the eight different datasets used for clustering.

Shown are the top intersections (R20 members) as a vertical bar plot, sorted by size.

(C) Rarefaction curves for the most diverse datasets showing the accumulation of VCs as a function of sampled viral contigs (N).

Please cite this article in press as: Jahn et al., A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion, Cell Host & Microbe (2019),
https://doi.org/10.1016/j.chom.2019.08.019
for viral populations of the North Western Mediterranean Coast

close to Barcelona), representing 51.4% of all the read-level

data (Table S1; Figure S1). Of these, 101 were circular with

matching ends and represent putatively complete viral ge-

nomes. The remaining contigs (of which 1,649 were R10 kb)

were either putative linear genomes or genome fragments

(Roux et al., 2019). To investigate how the 4,484 BCvir popula-

tions were positioned in the known viral sequence space, we

clustered our sequences with an extended sequence space of

11,901 viral genome sequences obtained from viral Refseq

and the ActinophageDB as well as 29,922 assembled contigs

from 130 publicly available marine viral communities. This anal-

ysis was based on shared gene content and detected 3,218 viral

clusters (VCs) (Figure 1A). The 4,484 BCvir populations parti-

tioned into 813 VCs (green) representing 25.3% (n = 813 of

3,218 VCs) of the total viral diversity included in this extended

database. Notably, most of the BCvir diversity consisted of vi-
2 Cell Host & Microbe 26, 1–9, October 9, 2019
ruses that were never detected before, as indicated by the

fact that these VCs contained only BCvir contigs (n = 491 of

3,218 VCs; 15.3%) (Figure 1B), many of which shared no distant

edge with other VCs. To ensure that this observation was not in-

flated by the shorter 5 kb contig length cutoff, which we had

initially applied to capture shorter single-stranded DNA (ssDNA)

viruses, we performed the same analysis again using a more

stringent 10 kb length filter as suggested in Roux et al. (2017).

With this approach, the 1,649 BCvir populations partitioned

into 997 sponge VCs, of which 371 were uncharacterized

(n = 371 of 1,304 VCs; 28.5%) in the extended sequence space.

VCs delineate approximately genus-level taxonomy in known vi-

ruses (Lima-Mendez et al., 2008; Roux et al., 2015) with at least

371 sponge-derived VCs appear not to be part of the 803

viral genera currently listed by the International Committee on

Taxonomy of Viruses ICTV (King et al., 2018) (via ViralRefseq;

see Figure S2). Our virome dataset contained 3.9% BCvir
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Figure 2. Iterative Cross-Assembly of Sponge-Associated Viromes

Clustering shows the distance between viral metagenomes based on the fraction of cross-assembled contigs between all sample pairs. Comparing topology

against 1,000 random trees indicates significant separation of environments (sponge versus seawater) and sponge species (p value % 0.001) but not sponge

tissues (p value = 0.991). Heatmap shows the relative abundances of viral contigs and their grouping into prevalence groups as detailed in the STAR Methods

section. Color scheme is based on Z score distribution across samples from low (blue) to high (red).
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populations that could be annotated at the family level, repre-

senting mainly bacteriophages of the Caudovirales families,

Siphoviridae, Myoviridae, and Podoviridae (Figure S2B). Rare-

faction analysis indicated that more sponge viral diversity re-

mains to be discovered, as the curve has not reached saturation

(Figure 1C). These observations, combined with the limited taxo-

nomic overlap with other marine environments (Figure 1C), led

us to the conclusion that sponges represent distinct niches for

viruses with potential for previously undescribed functions.

Unique Viromes in Neighboring Sponges
Viral communities of neighboring sponges were individually

unique, host species specific, and different from environmental

seawater (Figure 2). This is indicated by the fact that viral com-

munity profiles grouped per sponge species (p value < 0.001,

consistency value = 0.907) and were distinct from adjacent viro-

plankton (p value < 0.001, consistency value = 0.973). Variation in

viral community composition within a given sponge species was

mainly on the level of sponge individuals (p value < 0.001, consis-

tency value = 0.679), rather than tissue-specific signatures

(p value = 0.991, consistency value = 0.534). These observations

based on the fraction of cross contigs between the sample pairs

(detailed in STAR Methods) showed high concordance with re-

sults from hierarchical clustering of abundance profiles (Fig-

ure S4). We further explored viral populations by conceptualizing
viral prevalence groups (see STAR Methods for details). These

were the generalists (prevalent in more than one sponge species

or seawater), specialists (prevalent in one sponge species or

seawater), individualists (detected in only one individual but

both tissues), and intermediates (not falling into the above defini-

tions) (Figure 2). Notably, even though we obtained the samples

from neighboring sponges of each sponge species at the same

time point, individualists, at 34.8% (1,560 of 4,484BCvir contigs),

represented the largest virome group in our study. Furthermore,

individualists were the second most abundant prevalence group

in the dataset, indicating that thesewere not raremembers of the

community. In contrast, aminor fraction of BCvir population con-

tigs were generalists being prevalent in all (n = 10) or multiple

(n = 262) sample types (species and/or seawater). Specialists,

with prevalence in one of the sponge species or seawater,

were 27.9% (1,249 of 4,484). The intermediates, although not

further categorized, still contain a species-specific pattern.

Because efforts weremade tominimize environmental variations

by sampling in close spatial and temporal proximity, we conclude

that the sponge individuals each have a unique viral fingerprint.

Symbiont Phage Protein Aids Bacteria in Eukaryote
Immune Evasion
To identify factors that might improve fitness of the phages, we

queried BCvir populations for auxiliary genes (Roux et al.,
Cell Host & Microbe 26, 1–9, October 9, 2019 3
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Figure 3. Symbiont Phage ANKp Reduces Phagocytosis and Immune Response of Eukaryote Cells toward Bacteria

(A) Relative abundance of auxiliary viral functions in sponge versus seawater (raw data and further host association factors available in Data S1).

(B) Domain architecture of ankyrin repeat encoding genes from sponge-enriched phages and representative protein models, approximated using I-TASSER.

Template modeling (TM) score measures protein similarity and the confidence (C)-score prediction accuracy (Roy et al., 2010). RMSD indicates model root-

mean-square deviation.

(C) Growth kinetics of E. coli K12 that are challenged with murine bone-marrow-derived macrophages (BMDMs) upon expression of recombinant ANKp. Plus+ and

minus� indicate treatments with and without IPTG induction of protein expression. Strains expressingGPFwere used as the negative control and the NF-kB inhibitor

JSH-23 was used as the positive control for immune inhibition. Data are presented as the mean ± SEM of three independent experiments (each with n = 6).

(D) Expression levels of pro-inflammatory cytokines in macrophages (BMDMs) and intestinal epithelial cells ModeK upon infection with ANKp expressing E. coli.

(E) Gentamycin protection assay reveals that ANKp expression leads to a reduced number of intracellular bacteria.

(F) NF-kB activation in ModeK with dual-luciferase assay.

Data are presented as the mean ± SEM of at least three independent experiments. Statistical significance between treatments was determined by two-tailed

unpaired Student’s t tests with *p < 0.05, **p < 0.01, and ***p < 0.001.
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2016; Data S1). We then extended our search for cellular mem-

brane transporters, adhesins, defense systems, and cellular

signal molecules owing to their potential relevance in a symbio-

sis context. We were surprised to find Ankyrin repeat domains

(ANKs), discussed modulators of eukaryote-prokaryote interac-

tion (Nguyen et al., 2014), to be encoded on sponge-associated

phages (Figure 3A). These ANK-encoding phages (BCvir 2964,

BCvir 2161, and BCvir 4986), which we will call Ankyphage 1,

2, and 3 hereinafter (Data S1; Ankyphage annotation), recruited

reads from 12 of 32 sponge viromes from both pinacoderm

and mesohyl tissues but were absent in seawater. All three

Ankyphages fall in the category ‘‘intermediates’’ (Figure 2).
4 Cell Host & Microbe 26, 1–9, October 9, 2019
Furthermore, Ankyphages were in the top 75th percentile of

most abundant viruses detected in Aplysina and Chondrosia.

To ensure that Ankyphage sequences are indeed phage, we

confirmed their phylogenetic placement among bacteriophages

based on capsid alignments (Figures S3A and S3B) and ensured

on the same contigs the presence of further phage domains (Fig-

ure S3C), such as phage terminase (PF03354), phage portal

protein (PF04860), and phage P22 coat protein (PF11651). The

presence of ANK in CsCl-purified virus particles was confirmed

by Sanger sequencing. Notably, the domain architecture of

two Ankyphage ANKs comprised N-terminal signal peptides

but no transmembrane domains (Figure 3B). This suggests that
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Figure 4. Global Distribution of Phage ANKs as Deposited in the IMGvr Database

(A) Prevalence of ankyrins in phages per predicted prokaryotic host (as deposited in IMGvr database metadata). Numbers on the x axis indicate the total size of

phage genomes or contigs per host taxon.

(B) Number of phages with ANK domains per environment. Prokaryotes or environments with eukaryote host associations are highlighted in blue. The data are

based on IMGvr database (Paez-Espino et al., 2019) screening for ankyrin Pfam signatures Ank (PF00023), Ank_2 (PF12796), Ank_3 (PF13606), Ank_4 (PF13637),

and Ank_5 (PF13857) using InterPro (see STAR Methods).
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these ANKs are secreted from a phage-infected bacterial cell

where Ankyphages may be integrated as prophages or pseudo-

lysogens with stable episome.

We then synthesized Ankyphage 3 ANK protein (ANKp) and

assayed its impact on the interaction between bacteria andmac-

rophages. Murine cell lines were chosen for the lack of an exper-

imentally tractable model for sponge-microbe interactions (Pita

et al., 2016). Murine macrophages functionally resemble certain

sponge cells (archaeocytes) that are single, amoeboid, and

phagocytotically active cells, which patrol throughout the

sponge matrix. Notably, Ankyphages were found as well

throughout all sponge tissues. Moreover, the major elements

involved in mammalian immune signaling were found to be pre-

sent in sponges (Pita et al., 2018; Riesgo et al., 2014). When

E. coliwas pre-incubated with purified ANKp, the bacterium sur-

vived in significantly higher abundances upon predatory pres-

sure from murine macrophages than GFP controls (Figures

S3F and S3D). This effect was dose dependent (1 mM >

100 nM ANKp) and reproducible for different bacteria to macro-

phage ratios (multiplicity of infection (MOI) 0.1, 1, and 10). Gen-

tamycin protection assays, which allowed us to quantify the

intracellular bacteria fraction, showed that increased survival of

ANKp pre-incubated E. coli was paralleled with a decreased

number of intracellular bacteria expressing the protein (p value =

0.0414, t = 2.963, and df = 4) (Figure 3E). This indicates that

ANKp-mediated bacterial survival is facilitated by decreased

macrophage phagocytosis rates. In support of these findings,

when ANKp was directly expressed by E.coli, this resulted in a

significantly increased survival rate of E.coli upon exposure to

macrophages, showing that ANKp is functional when secreted
(Figures 3C and S3E). To ensure that ANKp protein had no toxic

effect on one of the players, we performed bacterial growth ex-

periments in culture and on plates and for the eukaryotic cell line

MTS assays upon protein exposure showing low cytotoxicity

(Figures S3G–S3I). The same growth experiment exercised

with pre-incubated Bacillus subtilis, a Gram-positive representa-

tive, was consistent with ANKp-mediated bacterial survival dur-

ing macrophage challenge (Figure S3C).

On the side of the macrophage, ANKp synthesis by E. coli led

to a reduced expression of pro-inflammatory cytokines upon

bacterial exposure (Figure 3D). Specifically, this included a

reduction in tumor necrosis factor alpha (TNF-a), Cxcl1, and

Ifn1. To independently validate phage ANKp-mediated

eukaryote immune suppression and to extend the analysis to a

further eukaryotic cell type, we performed an NF-kB-dependent

firefly luciferase assay on murine gut endothelial ModeK cells. In

line with previous results, the NF-kB response, a central hub of

eukaryote immunity (Li and Verma, 2002), was downregulated

when ModeK cells were exposed to ANKp expressing E. coli

(Figure 3F). In summary, this shows that ANKp modulates the

eukaryote response to bacteria by downregulating pro-inflam-

matory signaling along with reduced phagocytosis rates.

To investigate whether phage ankyrins are more common in

nature, we extended homology searches to various other viral

databases including IMGvr (Paez-Espino et al., 2019) (July

2018 release). We identified an abundant ANK-encoding virus

in the Great Barrier Reef sponge Amphimedon queenslandica

(Laffy et al., 2018) (Data S1; Ankyphage annotation). Further-

more, we identified ANKs in 418 predicted phage contigs depos-

ited in IMGvr (Paez-Espino et al., 2019) (Figure 4). Notably,
Cell Host & Microbe 26, 1–9, October 9, 2019 5
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Ankyphages were obtained from host-associated environments

such as the human oral cavity (n = 67 phages), gut (n = 6), stom-

ach (n = 5), or rhizosphere (n = 4) but also from aquatic environ-

ments ranging from marine to groundwater.

DISCUSSION

Wediscovered an astonishingly intimate association between vi-

ruses and marine sponges. Altogether 491 yet unexplored VCs

were identified in sponges that delineate genus-level taxonomy

(Lima-Mendez et al., 2008; Roux et al., 2015). This compares

to 1,843 VCs from the Tara Oceans and other large-scale expe-

ditions focusing on viroplankton. Although the applied genome-

based network clustering approach cannot replace well-curated

taxonomy (King et al., 2018), the results of us and others (Paez-

Espino et al., 2016) indicate that marine animals indeed repre-

sent distinct niches of viral diversity. Consequently, future efforts

to capture more host-associated environments have high poten-

tial to add up to the increasingly understood planktonic viro-

sphere of surface waters (Coutinho et al., 2017; Gregory et al.,

2019; Roux et al., 2016). Because animal microbiomes are highly

species specific (Hacquard et al., 2015; Moeller et al., 2016;

Thomas et al., 2016) and the virome depends on themicrobiome,

we further expect species-specific viral communities to rule in

nature. This is supported by our sympatric sponge species,

each holding characteristic viral communities (Figure 2). System-

atic studies in other sponges (Laffy et al., 2018) but also in Hydra

(Grasis et al., 2014) and insects, where signatures of phylosym-

biosis were observed (Leigh et al., 2018a), are supportive for

species-specific viromes in animals.

An even higher level of association of viruses with their animal

hosts was identified by our nested sampling approach (Figure 2).

This revealed that a considerable part of the virome signatures

was driven by viruses that were unique to sponge individuals

but not to tissues (Figure 2). Inter-individual differences were

also the largest source of variance in the viromes of humans

(Abeles et al., 2014; Moreno-Gallego et al., 2019). Our report

systematically extends individual virome signatures to marine

sponges and adds to evidence of virome individuality in other

marine animals (Leigh et al., 2018b; Orosco and Lluisma,

2017). The high degree of individuality in sponge viromes was

surprising considering the constant filtration activity of sponges

(Taylor et al., 2013). The diversifying forces accounting for indi-

vidual viromes may be asynchronous temporal fluctuations

between sponge individuals following delayed Lotka-

Volterra-like dynamics (Parsons et al., 2012) or an independent

diversification from a source pool (Enav et al., 2018). To resolve

this, further studies capturing the temporal dynamics of environ-

mental host-associated systems will provide valuable

information.

The discovery of auxiliary ankyrin repeats (ANKs) in a previ-

ously undescribed group of sponge-associated phages, that

we term Ankyphages, raised our special interest due to (1) their

protein architecture, which indicates its secretion from the viro-

cell; (2) their role as hubs of diverse protein-protein interactions,

including functions in cellular signaling; and (3) their broader

prevalence and abundance in the symbiotic context while lack-

ing in nearby seawater. We reasoned that phage-encoded

ANKs might increase the fitness of the carrying phages in the
6 Cell Host & Microbe 26, 1–9, October 9, 2019
context of the sponge holobiont. ANK repeats are widespread

in all domains of cellular life (Jernigan and Bordenstein, 2014),

but reports of ANKs in the world of phages are rare. A notable

exception is PRANC domains (Pox protein repeats of ankyrin

CTD), which are ANK homologs of poxviruses discovered in pro-

phages of Wolbachia (Bordenstein and Bordenstein, 2016; Wu

et al., 2004). Its placement in a conserved eukaryote association

module indicates its functioning in a eukaryotic context (Borden-

stein and Bordenstein, 2016). In the bacterial world, ANKs were

demonstrated to modulate interaction between species and

even across kingdoms (Lambert et al., 2015; Wong et al.,

2017). A notable example is a previous study on sponges, where

chromosomally encoded ANKs from an uncultivated gammapro-

teobacterium seemed to modulate amoebal phagocytosis

(Nguyen et al., 2014), even though the underlying mechanisms

on the eukaryote side are largely unclear.

Our in vitro experiments show that phage ANKp undermined

eukaryote immune response toward bacteria and facilitated

bacteria-eukaryote coexistence by reduced phagocytosis

rates. To the best of our knowledge, a secreted phage protein

shown to downregulate eukaryote immune response has not

been previously described. This finding has important implica-

tions from a symbiotic perspective. The reduction of predatory

pressure from the eukaryote host represents a selective advan-

tage for the symbiotic lifestyle of Ankyphage-infected bacteria

as compared to strains missing this trait (see Graphical Ab-

stract). Eukaryote immune evasion by phage-mediated lyso-

genic conversion is an emerging field of research that is

currently best studied in opportunistic pathogens (Van Belle-

ghem et al., 2018). Mechanisms range from phage-mediated re-

shaping of methicillin-resistant Staphylococcus aureus (MRSA)

cell wall glycosylation to evade host immunity (Gerlach et al.,

2018), to phage RNA of the Pseudomonas aeruginosa phage

Pf4 that downregulates eukaryote inflammatory response and

at the same time is taming for non-invasive infection (Secor

et al., 2017; Sweere et al., 2019). We are aware that the choice

for the experimentally more approachable murine model can

only be a proxy for processes yet to be observed in sponges.

However, consistent signals in E. coli and B. subtilis and the

tested eukaryote cell type (macrophages and an epithelial cell

line), might indicate a more widely distributed conserved

mode of action. This is fueled by our public database screen-

ings where we found phage-encoded ANKs in other

eukaryote-associated environments, such as phages inhabiting

human cavities (oral, stomach, or gut) representing a promising

field for future research. In summary, our study highlights the

novel diversity, intimate association, and tripartite interplay be-

tween phages, symbionts, and the eukaryote host. Importantly,

we identify and characterize a phage-derived protein that can

manipulate the immune interaction between eukaryotes and

microbiota.
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M., and Rodriguez-Valera, F. (2017). Genome diversity of marine phages
8 Cell Host & Microbe 26, 1–9, October 9, 2019
recovered from Mediterranean metagenomes: size matters. PLoS Genet. 13,

e1007018.

Marston, M.F., Pierciey, F.J., Shepard, A., Gearin, G., Qi, J., Yandava, C.,

Schuster, S.C., Henn, M.R., and Martiny, J.B.H. (2012). Rapid diversification

of coevolving marine Synechococcus and a virus. Proc. Natl. Acad. Sci.

USA 109, 4544–4549.

Moeller, A.H., Caro-Quintero, A., Mjungu, D., Georgiev, A.V., Lonsdorf, E.V.,

Muller, M.N., Pusey, A.E., Peeters, M., Hahn, B.H., and Ochman, H. (2016).

Cospeciation of gut microbiota with hominids. Science 353, 380–382.

Moreno-Gallego, J.L., Chou, S.P., Di Rienzi, S.C., Goodrich, J.K., Spector,

T.D., Bell, J.T., Youngblut, N.D., Hewson, I., Reyes, A., and Ley, R.E. (2019).

Virome diversity correlates with intestinal microbiome diversity in adult mono-

zygotic twins. Cell Host Microbe 25, 261–272.e5.

Nguyen, M.T., Liu, M., and Thomas, T. (2014). Ankyrin-repeat proteins from

sponge symbionts modulate amoebal phagocytosis. Mol. Ecol. 23,

1635–1645.

Nielsen, H. (2017). Predicting Secretory Proteins with SignalP. Methods Mol.

Biol. 1611, 59–73.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017).

metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27,

https://doi.org/10.1101/gr.213959.116.

Orosco, F.L., and Lluisma, A.O. (2017). Variation in virome diversity in wild pop-

ulations of Penaeus monodon (Fabricius 1798) with emphasis on pathogenic

viruses. Virusdisease 28, 262–271.

Paez-Espino, D., Eloe-Fadrosh, E.A., Pavlopoulos, G.A., Thomas, A.D.,

Huntemann, M., Mikhailova, N., Rubin, E., Ivanova, N.N., and Kyrpides, N.C.

(2016). Uncovering earth’s virome. Nature 536, 425–430.

Paez-Espino, D., Roux, S., Chen, I.A., Palaniappan, K., Ratner, A., Chu, K.,

Huntemann, M., Reddy, T.B.K., Pons, J.C., Llabrés, M., et al. (2019).

IMG/VR v.2.0: an integrated data management and analysis system for culti-

vated and environmental viral genomes. Nucleic Acids Res. 47, D678–D686.

Parsons, R.J., Breitbart, M., Lomas, M.W., and Carlson, C.A. (2012). Ocean

time-series reveals recurring seasonal patterns of virioplankton dynamics in

the northwestern Sargasso Sea. ISME J. 6, 273–284.

Pita, L., Fraune, S., and Hentschel, U. (2016). Emerging sponge models of an-

imal-microbe symbioses. Front. Microbiol. 7, 2102.

Pita, L., Hoeppner, M.P., Ribes, M., and Hentschel, U. (2018). Differential

expression of immune receptors in two marine sponges upon exposure to mi-

crobial-associated molecular patterns. Sci. Rep. 8, 16081.

Podell, S., Blanton, J.M., Neu, A., Agarwal, V., Biggs, J.S., Moore, B.S., and

Allen, E.E. (2019). Pangenomic comparison of globally distributed

Poribacteria associated with sponge hosts and marine particles. ISME J. 13,

468–481.

Riesgo, A., Farrar, N., Windsor, P.J., Giribet, G., and Leys, S.P. (2014). The

analysis of eight transcriptomes from all Poriferan classes reveals surprising

genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120.

Rohwer, F. (2003). Global phage diversity. Cell 113, 141.

Roux, S., Adriaenssens, E.M., Dutilh, B.E., Koonin, E.V., Kropinski, A.M.,

Krupovic, M., Kuhn, J.H., Lavigne, R., Brister, J.R., Varsani, A., et al. (2019).

Minimum information about an uncultivated virus genome (MIUViG). Nat.

Biotechnol. 37, 29–37.

Roux, S., Brum, J.R., Dutilh, B.E., Sunagawa, S., Duhaime, M.B., Loy, A.,

Poulos, B.T., Solonenko, N., Lara, E., Poulain, J., et al. (2016). Ecogenomics

and potential biogeochemical impacts of globally abundant ocean viruses.

Nature 537, 689–693.

Roux, S., Emerson, J.B., Eloe-Fadrosh, E.A., and Sullivan, M.B. (2017).

Benchmarking viromics: an in silico evaluation of metagenome-enabled esti-

mates of viral community composition and diversity. PeerJ 5, e3817.

Roux, S., Hallam, S.J., Woyke, T., and Sullivan, M.B. (2015). Viral dark matter

and virus–host interactions resolved from publicly available microbial ge-

nomes. Elife 4.

Roux, S., Krupovic, M., Debroas, D., Forterre, P., and Enault, F. (2013).

Assessment of viral community functional potential from viral metagenomes

http://refhub.elsevier.com/S1931-3128(19)30428-7/sref21
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref21
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref22
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref22
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref22
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref23
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref23
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref23
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref24
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref24
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref25
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref25
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref25
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref25
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref26
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref26
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref26
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref72
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref72
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref72
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref72
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref27
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref27
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref27
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref28
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref28
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref28
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref28
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref28
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref76
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref76
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref76
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref29
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref29
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref29
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref30
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref30
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref30
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref31
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref31
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref31
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref32
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref32
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref32
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref32
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref33
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref33
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref33
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref33
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref34
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref34
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref34
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref35
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref35
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref35
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref36
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref36
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref37
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref37
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref38
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref38
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref38
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref39
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref39
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref39
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref39
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref40
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref40
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref40
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref40
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref41
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref41
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref41
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref42
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref42
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref42
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref42
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref43
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref43
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref43
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref75
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref75
https://doi.org/10.1101/gr.213959.116
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref44
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref44
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref44
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref45
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref45
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref45
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref46
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref46
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref46
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref46
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref47
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref47
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref47
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref48
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref48
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref49
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref49
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref49
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref50
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref50
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref50
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref50
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref51
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref51
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref51
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref52
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref53
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref53
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref53
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref53
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref54
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref54
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref54
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref54
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref55
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref55
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref55
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref56
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref56
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref56
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref57
http://refhub.elsevier.com/S1931-3128(19)30428-7/sref57


Please cite this article in press as: Jahn et al., A Phage Protein Aids Bacterial Symbionts in Eukaryote Immune Evasion, Cell Host & Microbe (2019),
https://doi.org/10.1016/j.chom.2019.08.019
may be hampered by contamination with cellular sequences. Open Biol. 3,

130160.

Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for

automated protein structure and function prediction. Nat. Protoc. 5, 725–738.

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister,

E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al.

(2009). Introducing mothur: Open-Source, Platform-Independent,

Community-Supported Software for Describing and Comparing Microbial

Communities. Appl. Environ. Microbiol. 75 (23), 7537–7541.

Secor, P.R., Michaels, L.A., Smigiel, K.S., Rohani, M.G., Jennings, L.K., Hisert,

K.B., Arrigoni, A., Braun, K.R., Birkland, T.P., Lai, Y., et al. (2017). Filamentous

bacteriophage produced by Pseudomonas aeruginosa alters the inflammatory

response and promotes noninvasive infection in vivo. Infect. Immun. 85,

e00648-16.

Shen, A., Lupardus, P.J., Morell, M., Ponder, E.L., Sadaghiani, A.M., Garcia,

K.C., and Bogyo, M. (2009). Simplified, enhanced protein purification using

an inducible, autoprocessing enzyme tag. PLoS One 4, e8119.

Slaby, B.M., Hackl, T., Horn, H., Bayer, K., and Hentschel, U. (2017).

Metagenomic binning of a marine sponge microbiome reveals unity in defense

but metabolic specialization. ISME J. 11, 2465–2478.

Suttle, C.A. (2007). Marine viruses–major players in the global ecosystem. Nat.

Rev. Microbiol. 5, 801–812.

Sweere, J.M., Van Belleghem, J.D., Ishak, H., Bach, M.S., Popescu, M.,

Sunkari, V., Kaber, G., Manasherob, R., Suh, G.A., Cao, X., et al. (2019).

Bacteriophage trigger antiviral immunity and prevent clearance of bacterial

infection. Science 363.
Taylor,M.W., Tsai, P., Simister, R.L., Deines, P., Botte, E., Ericson, G., Schmitt,

S., and Webster, N.S. (2013). ’Sponge-specific’ bacteria are widespread (but

rare) in diverse marine environments. ISME J. 7, 438–443.

Thomas, T., Moitinho-Silva, L., Lurgi, M., Björk, J.R., Easson, C., Astudillo-

Garcı́a, C., Olson, J.B., Erwin, P.M., López-Legentil, S., Luter, H., et al.

(2016). Diversity, structure and convergent evolution of the global sponge mi-

crobiome. Nat. Commun. 7, 11870.

Thurber, R.V., Haynes, M., Breitbart, M., Wegley, L., and Rohwer, F. (2009).

Laboratory procedures to generate viral metagenomes. Nat. Protoc. 4,

470–483.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

D3I1O XP Rabbit mAb Cell Signaling Cat#12698; RRID: AB_2744546

Bacterial and Virus Strains

Bacillus subtilis DSMZ DSM 10

Escherichia coli K12 DSMZ DSM 498

BL21(DE3) E. coli New England Biolabs Cat#C2527I

Biological Samples

Sponge: Agelas oroides This manuscript N/A

Sponge: Aplysina aerophoba This manuscript N/A

Sponge: Chondrosia reniformis This manuscript N/A

Sponge: Petrosia ficiformis This manuscript N/A

Chemicals, Peptides, and Recombinant Proteins

Polyvinylpolypyrrolidone (PVPP) Sigma-Aldrich Cat#77627 CAS Number: 9003-39-8

Cesium chloride Fisher Scientific Cat#10648783 CAS Number: 7647-17-8

IPTG Sigma-Aldrich Cat#I6758 CAS Number: 367-93-1

JSH-23 Sigma-Aldrich Cat#J4455CAS Number: 749886-87-1

Critical Commercial Assays

FuGENE 6 Transfection Reagent Promega Cat#E2691

Maxima H Minus First Strand cDNA Synthesis kit Thermo Scientific Cat#K1682

Nextera XT DNA Library Preparation Kit Illumina Cat#FC-131-1096

pNF-kB-Luc Clontech N/A

Ni-NTA Fast Start Kit Qiagen Cat#30600

pRL-TK Clontech N/A

RNeasy Mini Kit Qiagen Cat#74106

TaqMan Gene Expression Master Mix Applied Biosystems Cat#4369016

Whole Transcriptome Amplification Kit 2 Sigma-Aldrich Cat#WTA2-50RXN

Deposited Data

Viromics raw data This manuscript BioProject: PRJNA522695

Microbiota 16S rDNA gene sequences This manuscript BioProject: PRJNA522695

Experimental Models: Cell Lines

MODE-K cells Kaser et al., 2008 N/A

Experimental Models: Organisms/Strains

Mice: female C57BL/6 own breeding N/A

Oligonucleotides

Cxcl1 TaqMan Gene Expression Assays

for mouse,Life Technologies

Mm00433859_m1

Gapdh TaqMan Gene Expression Assays

for mouse,Life Technologies

Mm99999915_g1

Ifnb1 TaqMan Gene Expression Assays

for mouse,Life Technologies

Mm00439552_s1

Tnfa TaqMan Gene Expression Assays

for mouse,Life Technologies

Mm00443258_m1

Recombinant DNA

pET22b-GFP-CPDSal Shen et al., 2009 Addgene Cat# 38257 RRID:Addgene_38257

pET22b-ANKp This manuscript N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Anvi’o v.2.1.1 Eren et al., 2015 http://merenlab.org/software/anvio/

BBMap v.37.7 Bushnell B. https://sourceforge.net/projects/bbmap/

CAT Bas E. Dutilh https://github.com/dutilh/CAT

cluster_screener This manuscript https://github.com/MartinTJahn/cluster_screener

crAss-Tool Dutilh et al., 2012 http://crass.sourceforge.net

Prism 6 software v.6 GraphPad https://www.graphpad.com/scientific-

software/prism/

Markov cluster algorithm (MCL) Enright et al., 2002 https://micans.org/mcl/

QUAST v5.0.2 Gurevich et al., 2013 http://quast.sourceforge.net/quast.html

InterProScan v5.27-66.0 Jones et al., 2014 https://www.ebi.ac.uk/interpro/download.html

I-TASSER v.5.1 Roy et al., 2010 https://zhanglab.ccmb.med.umich.edu/I-

TASSER/

iTOL v.4 Letunic and Bork, 2019 https://itol.embl.de/

LMCLUST This manuscript https://github.com/kseniaarkhipova/LMCLUST

metaSPAdes v.3.11.1 Nurk et al., 2017 https://github.com/ablab/spades/releases

mothur v.1.39.5 Schloss et al., 2009 https://www.mothur.org/wiki/Main_Page

PRODIGAL v2.6.3 Hyatt et al., 2010 https://github.com/hyattpd/Prodigal

RedRed Ksenia Arkhipova https://github.com/kseniaarkhipova/RedRed

SignalP v4.1f Nielsen, 2017 http://www.cbs.dtu.dk/services/SignalP/

Tecan i-control v.1.9 Tecan https://lifesciences.tecan.com/

TMHMM 2.0c Krogh et al., 2001 http://www.cbs.dtu.dk/services/TMHMM/

treestats Rob Edwards https://github.com/linsalrob/crAssphage/tree/

master/bin

VirSorter v.1.0.3 Roux et al., 2015 https://github.com/simroux/VirSorter

7900HT Fast Real-Time PCR Software v.2.4.1 Applied Biosystems https://www.thermofisher.com
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ute Hent-

schel (uhentschel@geomar.de). All unique reagents generated in this study are available from the Lead Contact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Generation of Bone Marrow-Derived Macrophages (BMDMs)
C57BL/6 mice (10-14 weeks old) were killed, femur and tibia were dissected, and bonemarrow was isolated under sterile conditions.

Haematopoietic stem cells differentiated into BMDMs by incubating for 7 days in BMDM medium (1:1 SFM:DMEM, Gibco) supple-

mented with 10 % FCS (Biochrom), 1 % penicillin/streptomycin (Gibco), 1 % amphotericin B (Gibco), and 20 ng/mL macrophage

colony-stimulating factor (mCSF, Immunotools). All animal experiments were approved by the Animal Investigation Committee of

the University Hospital Schleswig-Holstein (Campus Kiel, Germany; acceptance no.: V242-7224.121-33) and were performed ac-

cording the relevant guidelines and regulations.

ModeK Cells
ModeK cells were kindly provided by Arthur Kaser. ModeK cells were cultured in DMEM (DMEM Glutamax plus 10% FCS, non-

essential amino acids and HEPES, Gibco). Cells were incubated at 37�C at 5%CO2. All cell lines were authenticated by microscopic

morphologic evaluation, characteristic growth curves and screening for mycoplasma.

Bacteria
The bacterial strains used in this study are listed on the Key Resources Table. B. subtilis (DSMZ, #10) and E. coli, strain K12 (DSMZ,

#498) were cultured overnight at 37�C in LB medium. After adjustment to the desired density, serial dilutions of the inocula were

plated on LB agar plates to verify the CFU.
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METHOD DETAILS

Nested Sampling Design
The high microbial abundance (HMA) sponge species Petrosia ficiformis,Chondrosia reniformis, and Agelas oroides (each n=4) were

collected at theMongrı́ Coast, Cala Foradada, 3�12’00.09’’E, 42�04’56.97’’N, Girona, Catalunya, Spain) close to Barcelona by snork-

elling and scuba diving within a 20 m radius. We randomly sampled four individuals per species. Aplysina aerophoba (n=4) was

collected at a different site 25 km south-west (see for metadata Table S3). Immediately after collection, sponge samples were rinsed

in sterile artificial seawater, plunge frozen in liquid nitrogen, and stored at -80�C until further processing. Prior to sponge sampling, for

each spot, 30 litres of seawater were collected from the sponge vicinity using cooled sterilised tanks. Viroplankton was enriched by

FeCl3 flocculation according to John et al. (2011). Briefly, the seawater was pre-filtered (Millipore, 0.22 mm,142mm, GPWP14250) and

the virus fraction was incubated with FeCl3 (2.9 mg/liter) for 1 hour. The virion-iron precipitates were then recovered on a filter (GE

Polycarbonate Membrane filter, 1.0 mm, 142mm, K10CP14220) and resuspended in EDTA-ascorbate buffer (pH 6).

Sample Processing and Virome Sequencing
Deep frozen sponge individuals were dissected, separating the outer epithelial area (pinacoderm) from the inner mesohyl matrix. All

samples, including seawater references, were then randomly shuffled for virus purification and DNA/RNA extraction to avoid batch

effects during processing. Samples were thawed in preboiled ice-cold extraction buffer (artificial seawater with 10mM EDTA and 3%

(w/v) PVPP) and were disintegrated using a blender on ice at 6,500 rpm (T25 digital ULTRA-TURRAX, IKA). Particle aggregation was

reduced by vortexing the suspension 10 min on ice. Tissue debris, PVPP bound secondary metabolites and bacterial cells were

removed by centrifugation (2x 4,600g; 30 min at 4�C; ThermoScientific Heraeus Multifuge 3SR). The cleared supernatant was filtered

through a 0.45 mm filter (Conceição-Neto et al., 2015), and virions were pelleted using a Beckman SW-41-Ti swinging bucket rotor at

135,000 x g for 2 h. Virions were re-suspended inmodified SM-buffer containing 0.01MNa2S overnight, purified by low speed centri-

fugation at 4,300g for 5 min, loaded onto a CsCl gradient (1.7/1.5/1.3/1.2/1.1) according Thurber et al. (2009) and separated at

135,000 x g for 2 h. Virion-containing layers (CsCl density 1.2-1.5) were retrieved using a syringe and confirmed for viral particles

by epifluorescence and transmission electronmicroscopy. Notably, this purification methodwas shown to enrich for bacteriophages

and negatively selects for groups of eukaryotic viruses (Thurber et al., 2009). The virions were diluted in SM-buffer, purified by low

speed centrifugation as before and pelleted at 135,000 x g for 2 h. Upon overnight resuspension in Tris buffer, and removal of un-

dissolved particles at 1000 g for 1 min, the supernatant was transferred to a fresh tube and incubated with benzonase for 2 h at

37�C to remove free nucleic acid contamination. Encapsulated viral DNA and RNA were extracted according to Thurber et al.

(2009) and Lachnit et al. (2015). Viral nucleotides were randomly amplified using a modified version of the Whole Transcriptome

Amplification Kit 2 (WTA2, Sigma Aldrich) as described in Conceição-Neto et al. (2015). This approach allows the capture of sin-

gle-stranded and double-stranded DNA and RNA viruses with little amplification bias (as sequence reads represent viral genome

copies). NexteraXT libraries were prepared and sequenced on a Hiseq2500 run with 2x250 bp paired end reads at IKMB Kiel

(Data S1). From the same tissue as used for the viromes, V1V2+V3V4 of the 16S rRNA gene was amplified and sequenced as

described in Thomas et al. (2016).

Metagenome Cross-Assembly and Curation
Illumina reads were quality trimmed and cleaned from adapters, primers and reads with Ns or an average Q-score below 15 using

BBMap v37.75 (https://sourceforge.net/projects/bbmap/). This Q-score threshold was confirmed by trimming reads to either Q15 or

Q25 and by comparing the assembly statistics for each library using QUAST v5.0.2. (Gurevich et al., 2013). This showed inferior Q25

assemblies compared to Q15 assemblies as indicated by fewer long contigs (> 5 kb; see Data S1). The reads were then assembled

per library (n=36) and in random subsets of the total library pool (50x 0.01%, 12x 0.05%, 12x 0.10%) using metaSPAdes v3.11.1 with

default parameters (https://github.com/MartinTJahn/Iter_assembly). This multistep assembly strategy was tested in pilot assemblies

to improve the quality of the assemblies as described in more detail in Coutinho et al. (2017). Contigs from all assemblies were clus-

tered using a custom script (https://github.com/kseniaarkhipova/RedRed) into populations with mummer3 (Kurtz et al., 2004) at

R95% ANI across R80% of their lengths as inspired by (Roux et al., 2017). To filter for viral sequences and to remove remaining

potential cellular contamination, population contigs were submitted to VirSorter 1.0.3 (using ViromeDatabase and Virome decontam-

ination options) andwere additionally classified with the Contig Annotation Tool (CAT; https://github.com/dutilh/CAT). Contigs above

5 kb that were VirSorter classified and/or had superkingdom classification ‘‘Viruses’’ in CAT were used for downstream genome-

centric analysis. For functional gene-centric analyses, we increased stringency against cellular sequence contamination by consid-

ering only contigs with at least two VirSorter hits for viral hallmark genes (i.e., ‘‘major capsid protein,’’ ‘‘portal’’, ‘‘terminase large

subunit,’’ ‘‘spike’’, ‘‘tail,’’ ‘‘virion formation’’ or ‘‘coat) or CAT ‘‘viral superfamily’’ annotation. In the next round of cellular decontam-

ination, we screened against single-copy prokaryotic marker genes using Anvi’o v.2.1.1 workflow (Eren et al., 2015). A proportion of

6.19% (79 of 1276) of the contigs were hit by the single-copy prokaryotic marker database. Manual curation ensured that most of the

hits were homologous to phage nucleotide replicationmachinery (DNA/RNA polymerases) and RecA, while there were no hits against

any ribosomal RNA indicative of low remining contamination levels with cellular DNA/RNA (Roux et al., 2013). One contig with the

ClpX C4-type zinc finger domain was removed from further analysis due to its unclear viral association. These in silico filtration steps

ensured that no cellular signals should have been included in the functional analysis.
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Gene Content-Based Viral Clustering
Evolutionary relationships between the viral genome (fragments) were inferred by implementing reticulate classification based on

gene sharing as developed by Lima-Mendez et al. (2008). Briefly, we predicted 869,624 proteins from a set of 46,307 viral sequences

(see details below) with PRODIGAL v2.6.3 (Hyatt et al., 2010) and detected pairwise similarities using all-by-all BLASTp, requiring a

minimal bit score 50. Protein families were identified with the Markov cluster algorithm (MCL) using inflation factor 2 (Enright et al.,

2002). All viral genomeswere then compared to each other for shared protein family content, and the probability that similarity was by

chance was estimated using a hypergeometric formula (Lima-Mendez et al., 2008). The resulting significance scores were corrected

for multiple comparisons, and genome pairs with scores R 0 were joined by an edge [see https://github.com/kseniaarkhipova/

LMCLUST]. To define viral clusters (VCs) in the genome network, we determined 1.4 as the best MCL inflation factor based on

ICCC (intracluster clustering coefficient) maximization as described in Roux et al. (2015). The curated viral contigs were clustered

with well-characterized isolate genomes downloaded from the Actinobacteriophage database project (http://phagesdb.org/;

January 2018) and ViralRefseq (January 2018). To investigate overlap with other marine environments, we also clustered with viral

sequences from 130 environmental virome libraries. Specifically, 78 viromes cross-assembled from seawater (incl. Tara Oceans),

corals and sediment (Coutinho et al., 2017), 24 viromes from a seawater transect throughout the Mediterranean Sea (López-Pérez

et al., 2017) and all viromes from sponges known to date supplemented with corals (Laffy et al., 2018). Viral clusters were taxonom-

ically classified based on the placement of ViralRefseq entries in the network using a custom script [https://github.com/MartinTJahn/

cluster_screener]. For each taxonomic rank, clusters were screened for Viral RefSeq entries and classified according to the super-

majority (3/4) of their taxonomic annotations.

Abundance Profiles
Relative abundance patterns of viral genomes in the different samples were assessed by mapping quality control reads from each

library against the curated genome-centric catalogue using BBMap 37.75 (option ambiguous=random, ANI R 99%). The resulting

36 x 4484 count matrix was normalised for contig/virus length and library size to yield counts per kbp (CpK, Equation 1):

CpK =
count

length
� scaling factor � 103 with scaling factor =

�
mean library size=sample library size

�
(Equation 1)

Community and Prevalence Classification
Distances between viral metagenomes were computed with the reference-independent cross-assembly (crAss;(Dutilh et al., 2012))

tool. The resulting clustering was calculated based on the SHOT formula and was drawn with iTOL (Letunic and Bork, 2019). To infer

significant clustering of sample categories (type, species, tissue), the leaf labels and associated sample categories were compared to

N=1,000 trees where the leaf labels were randomized using a custom script [treestats.pl; https://github.com/linsalrob/crAssphage/

tree/master/bin]. The observed patterns were validated independently by hierarchical clustering based on Bray-Curtis distances of

community abundance signatures calculated in the R package vegan (Dixon, 2003).

Viral population enrichment for sample types was assessed using the population enrichment score (Equation 2)

Pop: enrichment score =
meanðCpKsampleÞ

meanðCpKother samplesÞ (Equation 2)

with a R 2-fold enrichment considered to be enriched.

Viral population contigs (BCvir) were defined as detected in a sample when at least 75% of its length was covered by read mapping

as suggested by Roux et al. (2017). BCvir were considered prevalent based on the supermajority rule when detected in at least 75%

of the samples in a sample category. ‘‘Individualists’’ were those BCvir that were detected in only one individual but both tissues.

‘‘Generalists’’ were prevalent in all or several sample categories, while ‘‘Specialists’’ were prevalent in only one sample type (Data S1).

Annotation and Auxiliary Gene Classification
Proteins were predicted from viral contigs that passed the stringent cellular contamination filter (n=1,275 BCvir contigs) and were

searched against the PFAM database (v31) using InterProScan v5.27-66.0 (Jones et al., 2014). Identified PFAM domains were

then classified into 8 functional categories: ‘‘metabolism’’, ‘‘lysis’’, ‘‘structural’’, ‘‘membrane transport, membrane-associated’’,

‘‘DNA replication, recombination, repair, nucleotide metabolism’’, ‘‘transcription, translation, protein synthesis’’, ‘‘other’’, and ‘‘un-

known’’ as in (Hurwitz et al., 2015) and extended by (Roux et al., 2016). This PFAM classification catalogue was augmented with

manual classification of 85 PFAM signatures that were novel compared to the seawater viromes in the present study. We realized

that in addition to auxiliary functions involved in the hosts metabolism (AMG), further categories might be relevant in the tripartite

system of phage-prokaryote-eukaryote (PPE-interaction, hereafter). Therefore, we manually reannotated category ‘‘others’’ into

classes ‘‘signalling and protein-protein interaction’’, ‘‘cellular binding’’ and ‘‘cellular defence systems’’, based on the literature

research and functional evidence. The final extended PFAM classification catalogue for phages is given in Data S1 and is open

for further use in other systems. For abundance estimations, multiple identical PFAM motifs in one protein, such as by repeats,

were counted as one to ensure that quantification is not biased towards repeat domains. Sequences were also annotated with Pro-

karyotic Virus Orthologous Groups (pVOGs; (Grazziotin et al., 2017)) through HMMER 3.1b2 (hmmscan -E 10-5), SEED subsystems

throughMG-RAST (E 10-5) andwerematched to NCBI-nr database entries using Diamond (e-value 10-5 and identityR40%). Proteins
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were screened for terminal signal peptides using SignalP v4.1f and for transmembrane domains using TMHMM 2.0c. The tertiary

structure of phage ankyrin-containing proteins was approximated by I-TASSER (default settings) (Roy et al., 2010). All annotations

are combined in Data S1.

ANKp Expression and Purification
The 568 nt ANKp encoding phage gene (BCvir 4986 ORF 10) was optimized for E. coli codon usage and then de-novo synthesized in

collaboration withGenScript (Piscataway, NJ, USA). The sequencewas then cloned into the pET-22b(+) vector using BamHi and XhoI

restriction sites. The same pET22b construct encoding GFP (Addgene plasmid # 38257 pET22b-GFP-CPDSalI) was used as a nega-

tive control andwas a gift fromMatthewBogyo & Aimee Shen (Shen et al., 2009). Plasmidswere transformed into BL21(DE3)-compe-

tent E. coli. Heterologous protein expressionwas induced inE. coliwith 0.4mM IPTG, and cultures were grown for 3 h at 37�C. For the
native purification of the His-tagged target proteins, the Ni-NTA Fast Start Kit (Qiagen) was applied according to the manufacturer’s

instructions.

ANKp Cell Exposure Assays
E. coliK12 (DSMZ, #498) orB. subtilis (DSMZ, #10) overnight Luria–Bertani (LB) medium cultures were harvested at 4,000g for 10 min

at room temperature and were washed twice with PBS. The bacterial suspension was then either incubated with ANKp (0 nM,

100 nM, 1 mM purified protein) or GFP (0 nM, 100 nM, 1 mM purified protein) in PBS for 10 min at 4�C under mild agitation. Prior

to infection, the medium of BMDM cell culture was replaced with fresh antibiotic-free BMDM medium, and the cells were then in-

fectedwith the pre-incubated E. coliK12with protein in their medium using a range ofmultiplicities of infection (MOIs). Optical density

measurements at a wavelength of 600 nm were performed using a Tecan Infinite 200 plate reader in a 96-well plate as described in

Erez et al. (2017). In addition to assays with purified protein we performed the BMDM experiment with recombinant E.coli (see ANKp

expression) directly expressing the proteins. As positive control for immune suppression we added the NF-kB inhibitor JSH-23

(Sigma-Aldrich). All in vitro data is representative for three independent non-randomized experiments. Sample sizes varied between

the experimental approach used andwere selected based on previous experience about the expectedmagnitude and variance of the

phenotype. If not otherwise stated in the figure legends, all experiments included at least 3 biological replicates.

RNA Extraction and Quantitative RealTime PCR
Total RNAwas isolated fromBMDMandModeK cell culture 16 h post infection using the RNeasy kit (Qiagen) and reverse transcribed

using the Maxima H Minus First Strand cDNA Synthesis kit (Thermo Scientific). Quantitative RealTime PCRs were performed with

TaqMan Gene Expression Master Mix (Applied Biosystems) according to the manufacturer’s instructions and were analysed on

the 7900HT Fast Real Time PCR System (Applied Biosystems). The applied TaqMan assays for pro-inflammatory markers are:

Cxcl1 (TaqMan ID Mm00433859_m1), Gapdh (TaqMan ID Mm99999915_g1), Ifnb1 (TaqMan ID Mm00439552_s1), Tnfa (TaqMan

ID Mm00443258_m1).

NF-kB–Dependent Luciferase Assay
The dual-luciferase assay using an NF-kB–dependent firefly luciferase (pNF-kB-Luc; Clontech) and a Renilla luciferase driven by the

thymidine kinase promoter (pRLTK; Clontech) was performed according to the manufacturer’s instructions. Briefly, ModeK cells

cultured in DMEM (DMEM Glutamax plus 10% FCS, non-essential amino acids and HEPES, Gibco) were transfected with 20 ng

pNF-kB-Luc and 3 ng pRL-TK using FuGENE 6 (Roche). Transfected cells were incubated for 24 h (37�C, 5% CO2), lysed and the

lysate was subjected to the dual-luciferase assay carried out on a Tecan 96-well microplate reader.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample Sizes
n represents the number of sponge individuals, seawater replicates or cell assay experiments as described in legends of each figure.

Statistical Analysis
Topology of the crAss clustering (Figure 2) was compared against 1,000 random trees as detailed in the methods section. The re-

ported consistency values represent the average of frequencies of the most frequent metadata annotation in a branch (Edwards

et al., 2019). Cell assay data are presented as the mean ± SEM of at least three independent experiments. Statistical significance

between treatments was determined by two-tailed unpaired Student’s t-tests with p values less than 0.05 that were considered sta-

tistically significant. Statistical tests were performed using GraphPad Prism 6.0 Software.

DATA AND CODE AVAILABILITY

The accession number for all sequencing libraries, the cross-assembly, of both the sponge viromes and seawater references, as well

as microbial amplicon data reported in this paper is GenBank: BioProject: PRJNA522695). All custom code is available at GitHub as

indicated in the methods section.
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