706 research outputs found

    Evaluating the use of lecture capture using a revealed preference approach

    Get PDF
    This article discusses the introduction of lecture capture technology on a large undergraduate module with diverse student cohorts. Literature has so far relied on surveying students to discover their use of the technology or attempted to quantify the impact of watching lecture recordings on assessment performance. Alternatively, the principal contribution of this article is an evaluation of the use of the recorded lectures using a revealed preference approach. Specifically we identify to what extent students watched lecture recordings, rather than simply claimed to watch them when asked to provide comments on the technology. Data indicates the number of distinct students who watched recordings, the frequency with which they watched recordings, the average length of viewings as well as the time of day when lectures were viewed. We monitored viewings over two academic years, identifying ‘spikes’ in the number of viewings in the days before tests, as well as regularities in the viewing patterns across the two years. We analyse the data to assess the extent to which students used the recordings, how and when they watched the recordings. We conclude that the students value lecture recordings, making more extensive use of the recordings than has been identified in the literature to date. Ultimately, lecture recordings are suggested to offer valuable support for students’ independent study

    Automated multi-objective calibration of biological agent-based simulations

    Get PDF
    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate simulations that generate more informative biological predictions

    Automatic mental processes, automatic actions and behaviours in game transfer phenomena: an empirical self-report study using online forum data

    Get PDF
    Previous studies have demonstrated that the playing of videogames can have both intended and unintended effects. The purpose of this study was to investigate the influence of videogames on players’ mental processes and behaviours in day-to-day settings. A total of 1,023 self-reports from 762 gamers collected from online videogame forums were classified, quantified, described and explained. The data include automatic thoughts, sensations and impulses, automatic mental replays of the game in real life, and voluntary/involuntary behaviours with videogame content. Many gamers reported that they had responded – at least sometimes – to real life stimuli as if they were still playing videogames. This included overreactions, avoidances, and involuntary movements of limbs. These experiences lasted relatively short periods of time but in a minority of players were recurrent. The gamers' experiences appeared to be enhanced by virtual embodiment, repetitive manipulation of game controls, and their gaming habits. However, similar phenomena may also occur when doing other non-gaming activities. The implications of these game transfer experiences are discussed

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    Nerve Growth Factor Stimulates Interaction of Cayman Ataxia Protein BNIP-H/Caytaxin with Peptidyl-Prolyl Isomerase Pin1 in Differentiating Neurons

    Get PDF
    Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin) lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation. (213 words

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Daptomycin in experimental murine pneumococcal meningitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Daptomycin, a lipopeptide antibiotic, could be an alternative to vancomycin for treatment of pneumococcal meningitis. We determined the activity of daptomycin versus vancomycin, with dexamethasone as an adjuvant, in a murine model of pneumococcal meningitis.</p> <p>Methods</p> <p>Ninety-six 25–30 gram mice were inoculated intracisternally with serotype 3 <it>Streptococcus pneumoniae </it>modified by the integration of a luminescent <it>lux </it>operon. All mice were treated with either dexamethasone 1 mg/kg intraperitoneally every 6 hours alone or in combination with either vancomycin or daptomycin, also administered intraperitoneally. Serum antimicrobial concentrations were selected to approximate those achieved in humans. Following treatment, bioluminescence and cerebrospinal fluid (CSF) bacterial concentrations were determined. Caspase-3 staining was used to assess apoptosis on brain histopathology.</p> <p>Results</p> <p>Sixteen hours post intracisternal inoculation, bacterial titers in CSF were 6.8 log<sub>10 </sub>cfu/ml. Amongst the animals given no antibiotic, vancomycin 50 mg/kg at 16 and 20 hours or daptomycin 25 mg/kg at 16 hours, CSF titers were 7.6, 3.4, and 3.9 log<sub>10 </sub>cfu/ml, respectively, at 24 hours post infection (p-value, < 0.001 for both vancomycin or daptomycin versus no antibiotic); there was no significant difference in bactericidal activity between the vancomycin and daptomycin groups (p-value, 0.18). CSF bioluminescence correlated with bacterial titer (Pearson regression coefficient, 0.75). The amount of apoptosis of brain parenchymal cells was equivalent among treatment groups.</p> <p>Conclusion</p> <p>Daptomycin or vancomycin, when given in combination with dexamethasone, is active in the treatment of experimental pneumococcal meningitis.</p
    corecore