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Abstract The Multiple-Travelling Salesman problem (MTSP) is a computa-
tionally complex combinatorial optimisation problem, with several theoreti-
cal and real-world applications. However, many state-of-the-art heuristic ap-
proaches intended to specifically solve MTSP, do not obtain satisfactory so-
lutions when considering an optimised workload balance. In this article, we
propose a method specifically addressing workload balance, whilst minimising
the overall travelling salesman’s distance. More specifically, we introduce the
Two Phase Heuristic algorithm (TPHA) for MTSP, which includes an im-
proved version of the K —means algorithm by grouping the visited cities based
on their locations based on specific capacity constraints. Secondly, a route
planning algorithm is designed to assess the ideal route for each the above
sets. This is achieved via the Genetic Algorithm (GA), combined with the
roulette wheel method with the elitist strategy in the design of the selection
process. As part of the validation process, a mobile guide system for tourists
based on the Baidu electronic map is discussed. In particular, the evaluation
results demonstrate that TPHA achieves a better workload balance whilst
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minimising of the overall travelling distance, as well as a better performance
in solving MTSP compared to the route planning algorithm solely based on
GA.

Keywords Multiple-Travelling Salesman Problem - Route Planning -
Heuristic Algorithm

1 Introduction

The Salesman Problem (TSP) is typically an NP-problem [1], whose objective
is to determine the shortest path across a set of randomly located cities, each
of them visited only once (with the exception of the starting point). From
a graph theory perspective, the core task of TSP is to obtain a minimum
Hamiltonian cycle. However, some real-world problems cannot be modelled
via a traditional simple TSP with one single salesman, including personnel
scheduling [2], patrol planning [3], and goods distributing [4] [5]. To address
this issue, Multiple TSP (MTSP) has been specifically designed to consider a
multiple-travelling salesman problem.

The aim of MTSP is to minimise the overall distance across n cities where
m salesmen start and complete their journeys at the same city, and the other
locations are visited only once. Clearly, TSP is a special case of MTSP for
m = 1. Heuristic approaches can be utilised to solve MTSP [6], such as the
Ant Colony Optimisation algorithm (ACO) [7], Particle Swarm Optimisation
algorithm (PSO) [8], and the Genetic Algorithm (GA) [9], to name but a few.
However, there are a variety of aspects, which require further improvements.
For example, ACO has a slow convergence speed, PSO tends to have local
optimisation issues, and GA is prone to be trapped in the premature conver-
gence and heavily depends on the initial population.

In this article, we propose a heuristic MTSP algorithm to obtain an op-
timised workload balance, whilst minimising the overall salesmen’s travelling
distance. The main contributions of our method include:

1. An extension of the current research on the balance problem associated
with MTSP, which can be regarded as a multi-objective programming prob-
lem. In particular, MTSP and its objective function are initialised to con-
sider the most appropriate conditions, which include the shortest distance
and the minimised difference of the distance travelled by each salesman.

2. A specific focus on the integration between the workload balance and the
minimisation of the overall travelling salesmen’s distance. To achieve this,
we propose the two phase heuristic algorithm (TPHA) for MTSP. In the
first phase, we improve the K —means algorithm by grouping all cities into
m subsets depending on their locations, based on some capacity constraints.
In the second phase, the route planning algorithm based on GA is designed
to obtain the ideal route for each city.
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3. The roulette wheel method is combined with the elitist strategy to design
the GA selection operation. Not only does the operation preserve the best
individuals, but it also ensures that the most appropriate fitness of the
individual is identified for the next generation. Subsequently, the method
of cross operation is utilised to select the modified order crossover (MOC),
which is based on the gene segment as the initial step. This operation
can produce a new generation, even if the two parent chromosomes are
identical. The main benefit of MOC includes an approach to address local
optima and premature convergence.

4. The planning of the travel route through specific scenic locations over a
period spanning several days was used as testing platform. A mobile guide
system for tourists was designed, which is based on the Baidu electronic
map and on TPHA. Firstly, the system locates the visitors’ positions via
GPS, and subsequently its utilises TPHA to provide the appropriate route
plan through a balanced number of scenic locations for each day. The
overall travelling distance is also minimised.

The rest of the paper is organised as follows: in Section 2, we discuss the
current state-of-the-art methods and techniques in the field. Section 3 provides
a detailed description of MTSP in detail and the mathematical model used in
this context is introduced. Section 4 focuses on the properties of TPHA, and
in Section 5 the evaluation results are discussed. Finally, Section 6 concludes
the article by summarising its main contributions discussing future research
directions.

2 Related Work

There is extensive research on TSP, including TSP with time windows [10],
TSP with minimum ratio [14]. Most of the existing solutions consider differ-
ent constraints, whilst finding a minimum Hamiltonian cycle. Currently, the
approaches to TSP are divided into exact and approximate algorithms. The
former mainly include dynamic programming [12], branch and bound [13], in-
teger linear programming [15], etc. However, if the scale of the TSP becomes
too large, its overall computational time and solution space will increase ex-
ponentially.

Inspired by biological activities or natural phenomena, some well-known heuris-
tic algorithms have been developed to solve large scale TSPs, including ACO,
PSO, and GA. There are significant research opportunities in the improve-
ment of such heuristic algorithms and their combination. Pham et al. [15]
propose two new crossover operators to improve the global ergodic property
of GA, which is a better solution for classical TSP, but not for complex TSP
with multiple constraints. Chen et al. [16] introduce an improved dynamic
programming algorithm to deal with large-scale data, used as crossover and
mutation operator in GA. Atif et al. [17] integrate K —means algorithm [18]
with the greedy algorithm and Lin Kernighan’s algorithm [19] to create an
enhanced solution for large-scale TSP. However, this method is significantly
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Fig. 1 The example described in Section 3.

affected by the scale of the subset partition.

A Multi-Travelling Salesman Problem (MTSP) is characterised by more than
one salesman and as a consequence, MTSP typically has a higher level of
complexity compared to TSP. MTSP can be converted into TSP, and Goren-
stein [20] propose a basic strategy to achieve this, based on m salesmen, and
m — 1 virtual cities. These are used to define a gap between different travelling
salesmen, whilst the distance between the virtual cities is considered infinite.
Yuan et al. [21] discuss a new crossover operator called two-part chromosome
crossover for the genetic algorithm in order to obtain near-optimal solutions
of MTSP. However, this method is affected by the growth of the chromosome
length and the overall cost of the solution. Kaliaperumal et al. [22] present the
Modified Two-Part Chromosome Crossover to address MTSP by employing
a genetic algorithm for nearby optimal solutions. However, this method allo-
cates a different number of the cities for each salesman, and therefore it cannot
successfully address MTSP with workload balance. Osaba et al. [23] propose
the Real-World Dial-a-Ride problem, which is modelled as a MTSP. In partic-
ular, they propose GELS-GA, a new hybrid algorithm, which achivies optimal
values even in highly complex scenarios. Finally, Alves et al. [24] consider
the workload balance of MTSP, and develop GA to reduce both the overall
distance and the difference between the distances travelled by each salesman.

3 Modelling of the MTSP

Typically, MTSP only aims to obtain the least total cost of distance or time.
For example, Figure 1 depicts a scenario defined by 3 salesmen and 9 cities,
where node 0 is the starting and ending point.

As shown in Figure 1(a), there are two salesmen traversing two cities re-
spectively, whereas all the other ones are traversed by the third salesman. It
is clear that the salesmen’s workloads are unbalanced. As discussed above,
the main objective of MTSP is to minimise the overall distance travelled by
all salesmen, which may cause an unbalanced workload problem. Figure 1(b)
shows an ideal solution for MTSP with workload balance. In order to achieve
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a balanced allocation of workload, there are typically two different strategies.
The first aims to balance the number of cities assigned to each salesman,
whereas the second focuses on optimising the balance of the distances trav-
elled by each salesman.
Formally speaking, MTSP with m salesmen and n cities is defined as a com-
plete graph

G=G(V,E), (1)

where V' = {vy,...,v,} represents cities with the starting location at vertex
vo, and each edge (v;,v;) is associated with a weight d;; (d;; > 0, di; =
00,v;,v; € V), which represents the cost of the path (in terms of distance or
time) between cities ¢ and j. We define the maximum number of cities @ for
each salesman to achieve workloads balance as

Q=[—] (2)
As a consequence, one of the objectives of MTSP is to determine m sequences

of Hamiltonian cycles over G, with the least total cost so that each salesman
visit one and only one city. The objective function of MTSP is therefore

min Z = ZZZTW dyj, 3)

t=0 i=0 j=0
subject to
m
domi=1 i=1,...,n (4)
t=0
n
Zrijt:ytj ]zl,,th (5)
i=0
n
Zrijt:yti zzl,,th (6)
i=0
n
i=0
where
— i refers to a city (i =1,...,n), so that the starting location is 0;
— t refers to a salesman (¢ = 1,...,m), where m is the total number of
salesmen;

— d;; represents the distance between the cities ¢ and j;

— ( is the maximum number of cities travelled by each salesman;

— ri5¢ € {0,1}, such that r;;; = 1 if the salesman t travels directly from city
i to city 7, and 7;;; = 0, otherwise;

ye; € {0,1} and y4; = 1 if the salesman ¢ visited the city ¢, and y; = 0,
otherwise.
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In particular, Equation 4 ensures that each city must be visited by one sales-
man exactly once. Equations 5 and 6 indicate that all the salesmen’s itineraries
must begin and end at the same city. Finally, Equation 7 ensures that the num-
ber of cities traversed by each salesman cannot exceed a specific value.

4 Two Phase Heuristic Algorithm for MTSP

As discussed above, TPHA consists of a clustering algorithm, which aims to
assign individual cities to m sets, and subsequently, a heuristic algorithm is
implemented to plan a route for each city set. K —means is a very popular algo-
rithm for partitioning a large dataset into multiple subsets, which is based on
the Euclidean distance as the fitness function. This implies that the elements
within a cluster are relatively concentrated and therefore meet the MTSP re-
quirements. In this article, we combine K —means with the maximal capacity
constraint to balance the number of cities belonging to the corresponding sub-
sets. Despite a relatively large variety of clustering algorithms, which could be
potentially applied in this context, K —means currently offers the most appro-
priate option. In fact, our proposed method focuses on city locations measured
in terms of Euclidean distance, supporting our choice. In future research, we
aim to comparatively assess the accuracy and feasibility of other clustering
algorithms.

GA is renowned for its global search efficiency, and good scalability. In this
work, we utilise the roulette wheel method and the elitist strategy as the se-
lection operation of GA, where MOC is set to be the gene segment associated
with the initial step. This operation can produce a new generation, even if the
two parent chromosomes are identical. Furthermore, MOC can address the
issue of local optima and premature convergence.

4.1 City Clustering Based on Improved K —means

In the original K —means algorithm, k cities are randomly selected as centres
of the corresponding cluster, which subsequently identifies all nearby cities via
the fitness function, whilst adjusting the centroid location accordingly. These
steps are repeated until the convergence of algorithm is obtained. However,
the original K—means algorithm cannot meet the objective of achieving a
balanced number of cities.

Let V ={V; :i=1,...,n} be the set of n cities, and assume that the initial
cluster set s = (c1, ... cx), Uj has ¢; as its centroid, where v; = v;,,j = 1,... k.
Also assume that the number of cities in each cluster g; is set to 0.

The K —means algorithm used in this work includes the following steps:

n
Step 1: set the capacity of each cluster, where @ = [—] is the capacity con-
m

straint.
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Step 2: calculate the distance of each city v; € V to the cluster centre v; with

o = 0ll = /(@i — )2 + (i~ g% = L.on, G=1. kK (8)

and sort all the distance values ||v; — 75| in ascending order.

Step 3: if there is a city v; € V' with minimum distance to the centroid c;, then
let ¢; = ¢; + 1, and then calculate whether the current number of cities
in ¢; is satisfied with ¢; < Q. If it is, then v; is assigned to ¢;. Otherwise,
let the distance value ||v; — ¥;|| = oo between the city v; and the centroid.
Repeat the steps until all cities are assigned.

Step 4: the coordinates of the centroid is updated via

lesl o= -

?szZyi

|Cj| v;€C;

where |¢;| is the number of cities in the cluster ¢;. If the coordinates of the
centroid are not changed, then the result is assumed to convergence, and
move to Step 5; otherwise, go to Step 2.

Step 5: the clustering process is complete with the output cluster s = (¢1,. .., c)-

4.2 Route planning based on GA

The main GA parameters include parameter initialisation, initial population,
evaluation of fitness function, the selection and the crossover operation, as well
as the mutation operation. Table 1 lists some important parameters related to
the algorithm.

Different GA approaches might involve different encoding, crossover and
mutation operations, which may lead to a divergence of the iterative process.
Therefore, it is necessary to redesign the above operations to ensure that the
optimal solution is indeed attained.

4.3 Initial population encoding

In order to provide an integration of the definition of GA with the problem in-
troduced above, it is necessary to identify a suitable encoding operator, which
determines the evolution of the population. In any GA approach, a binary rep-
resentation is generally applied to describe the corresponding target problems.
However, according to the properties of TSP, each city can be associated with
an integer, which represents a path 1,...,n, corresponding to a route scheme
type. Therefore, solving TSP implies finding the shortest distance between any
two numbers associated with two cities [25].
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Table 1 Related parameters

Parameters Description

G Total number of iterations

Psize Size of population

Pe Crossover probability

Pm Mutation probability

K Number of iterations

Xk All population of the k—th generation

XF The 4 — th individual in X%

Dk The i — th individual’s evaluation value in X*, D¥ = D(XF)
rk The i — th individual’s evaluation value in X*, F} = F(XZ“)

k2
[subz1 subza] = CS(z1,2z2) The new generation subzi and subza,
which is obtained by the parents of x; and xo through the
method of ameliorate order crossover

U(0,1) Random function generating number subject to (0,1)
uniform distribution

Xbpest The current best individual

Dpest The current best individual evaluation value

4.4 Fitness function

The fitness function is used to assess individual elements in the corresponding
group. The selection operation based on the fitness value is one of the main
steps in GA, and, to a large extent, it determines the performance of GA. In
particular, a high value of the fitness evaluation implies that an individual has
a high probability of being chosen. The fitness function F'(x) is defined as

(10)

where x represents an individual, and D(z) is the distance travelled by the
individual . As can be seen from Equation 10, an individual z follwoing a
shorter path will clearly have a high fitness value and will also have a high
genetic probability to be selected for the next generation.

4.5 Selection strategy

The selection strategy is an important step in the evolutionary operation of
GA, as it affects its efficiency. As discussed above, in this article we combine
the roulette wheel method with the elitist strategy as the selection strategy
of TPHA. More specifically, the former selects a chromosome in a statistical
fashion based solely on its fitness value. On the other hand, the latter moves
the individual with the best fitness at the current generation to the next one.
Compared to the original roulette wheel method, the TPHA selection strategy
allows to retain a “superior” individual. More specifically, we have the following
steps:
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Fitness Selection Cumulative

[ndividual Chromosome .1 | | Jbability | probability
1 36587142 | 6 0.200 0200
2 53168247 | 5 0.166 0.366
3 87625413 | 2 0.066 0.432
4 73841625 | 10 0333 0765
5 26481537 | 7 0233 1.0

Fig. 2 Roulette selection strategy.

Step 1: assume Pk, is the size of population, and Xf is the ¢ — th individual
in X*. Evaluate the i —th individual’s fitness value F¥ in descending order.
Subsequently, the individual with the best fitness at the current generation
is moved to the next one.

Step 2: the probability of each individual to be selected is evaluated as

FF
pi= (11)

TG
>
i=1

where p; is assigned to each individual X f based on the order of calculation.
Step 3: the next generation is selected via the roulette wheel strategy by ran-
domly generating a uniformly distributed number § within (0, 1). If

i—1 7
Spi<o<d p
j=0 =0

then Xf is selected to the next generation. Repeat the above steps until
all the parent chromosomes have been selected.

As shown in Figure 2, the greater the fitness value, the higher the probability
of being selected will be.

4.6 Crossover operation

Two parent chromosomes P, and P, are selected according to the crossover
probability p.. This generates two intersection points, which identify the corre-
sponding segments Ap; and Aps. Child 1 is then assigned to Ap; as the initial
gene, whilst the equivalent components of P,’s chromosome are ignored. Fi-
nally, the remaining part is added to Child 1. Child 2 is defined in a similar
manner. As an example, Figure 3, depicts the scenario with 8 cities, where
the integers in [0, 7] are associated with the two parents’ chromosomes. The
randomly selected Parent 1’s gene segment (e.g. 5213) is used as the initial
gene for Child 1, and the identical parts of Parent 2’s chromosome are ignored.
Finally, the remaining component is added to Child 1. The same procedure
also applies to Child 2.



10 Xjaolong Xu et al.

Parentl 5)2)(1)3 Parent2 g }!j‘ I}

NN\

Childi (5/2)1/3

Fig. 3 Implementation process of ameliorate OC operator.

Parent ‘(52 1 3 7 4.0 11‘6_‘;:

Pl

chid (521 @74 0@

Fig. 4 The mutation operation.

4.7 Mutation operation

The mutation operation plays an important role in improving local search ca-
pability, whilst maintaining the variability of the population. It also prevents
the premature GA convergence. This work utilises the swapping mutation,
as follows: via the mutation probability p,, a chromosome is selected, and
then two crossing points are randomly identified, whilst the selected points
are exchanged. Figure 4 shows the case with 8 cities again, so that a route
scheme is associated with the sequence of integers corresponding to cities
(5,2,1,3,7,4,0,6). Two selected swapping gene points are node 3 and node 6,
which are swapped to generate the offspring.

If the scheduled termination condition is satisfied (i.e. the number of iterations
is larger than @), then the iteration is halted, and the corresponding path is
considered satisfactory.

4.8 Detailed workflow
The detailed workflow includes the following steps:

Step 1: initialisation of the parameters, including G, Ps;.e, p. and p,,, and
the generation of initial population X!. We assume @pess = X1, Dpest =
D(X{),k=1,j=2,m=1,andn = 1.

Step 2: assessment of each individual’s evaluation value for each generation,
DY = D(XF), where the fitness value FF = D(XF), for i = 1,..., Psise.

For XF . if min {D(X)} = D(XE. ), then Dyin, = D(Xpnin), and Yy =
EAS
XE .. Otherwise, Dj.s; remains unchanged.
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Step 3: evaluation of the probability of the corresponding individual to be
selected for each generation via

FFk

7

pi =

e
> B
1=1

Step 4: if j > Ps;,e, then move to Step 5. Otherwise, randomly generate ¢ €

U(o,1). If
i—1 %
ij <é< ij,

j=0 j=0

then X is selected for the next generation. Let Y, = Xik,j =j+4+1, and
repeat this step.

Step 5: the sequence A is obtained by the random number of integers 1, . .. Pg;.e.
The individuals in population Y are subsequently re-arranged according to
A to obtain the population Z. Set X* =Y.

Step 6: if m > Py;.. then m = 1, and move to Step 8. Otherwise, randomly
generate a number r € U(0, 1), and move to Step 7.

Step 7: if 7 < p., then [subzy subxs] = CS(xk 2k ), and

S = [subxy subwa, X5, XF 1]
Select two chromosomes x1 and zo with a smaller evaluation value via
minges{D(x)} = D(x1)

and
Mingeg\z, {D(7)} = D(x2).

Let the next generation X**! = z; and X,’fl‘:_ll = 9, and move to Step 6.

Step 8: if n > Pgjze, let n = 1 and move to Step 10. Otherwise, randomly
generate a number r € U(0, 1), and then move to Step 9.

Step 9: if r < p,n, then execute the mutation operation on X* to obtain V**1,
Xkl = v+l Let n =n + 1 and then move to Step 8.

Step 10: set k = k+ 1. If kK < G, then move to Step 2. Otherwise, terminate
the algorithm, and output Xpest and Dpese-

The detailed flowchart of TPHA is shown in Figure 5.

5 Applications and Experiments

Tourism route planning is a well-known application of MTSP, where a tourist
needs to traverse various scenic locations subject to minimising the travelled
distance. Due to the constraint of a limited daily travel time, the number of lo-
cations needs to be balanced. Suppose there are n scenic locations, therefore a
tourist will spend m days visiting all of them. Another important requirement
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]
Begin initial population,
v G,Psize,Pc,Pm
Initialize parameters : l
kci.a:
9 Calculate each
individual's fitness value «—
Calculate the distance F(1),i=0
from the centroid C;
}7 roulette wheel method and
the elitist strat
Sort the distance A l ety
l Di=Inf ameliorate orde.r -t
N q=qi+1 crossover operation i=i+l
| N |
g<Q —— swapping mutation operation
Iy l
Add this point into the >G N
cluster l
Y
l Select optimal
‘Whether the cluster individual Xbest
convergence l
v End

Fig. 5 Flow chart of the TPHA.

is minimising the time spent travelling between different locations. Further-
more, it is assumed that a tourist starts and completes his/her journey at the
same hotel every day. In other words, we have the following constraints:

— The tourist will not change his/her hotel accommodation during his staying
in a city.

— Each location is visited once and only once.

— The daily travel time is fixed, which limits the number of locations visited
each day.

— The tourist will return to his/her hotel every day.

As part of the evaluation process, sixteen scenic areas in Nanjing city
(China) were selected as shown on the Baidu map in Figure 6. The hotel
accommodation was set as the Phoenix Universal Hotel. Table 2 shows a de-
tailed description of the locations, and Figure 7 shows their corresponding
latitude and longitude coordinates.

5.1 Experiments

First of all, by using TPHA, specific locations are assigned to different clus-
ters based on their latitude and longitude coordinates, and let the number of

days m = k = 4. The number of (daily visited) areas @, (Q = f%]) is eval-
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Table 2 Scenic Locations
Serial number  Scenic locations Abbreviation Latitude and longitude
coordinates
1 Laoshan National Forest Park  LSFP (118.600362, 32.102836)
2 Zhenzhu Fountain ZF (118.665367, 32.128073)
3 Yuejiang Tower YJT (118.753228, 32.099638)
4 Youth Olympic Games YOGP (118.671459, 32.055351)
Sports Park
5 Swallow rocky Park SRP (118.823312, 32.153159)
6 Mufu Mountain MM (118.784569, 32.121674)
7 Nanjing Hongshan Forest Zoo  HSZ (118.808457, 32.102101)
8 The Shence Gate Park SGP (118.793415, 32.090744)
9 Yuhuatai martyrs cemetery YMC (118.785541, 32.009374)
10 Memorial Hall of the MHVNM (118.752705, 32.040775)
Victims in Nanjing Massacre
by Japanese Invaders
11 Mochou Lake MCL (118.765195, 32.043606)
12 Presidential Palace PP (118.803388, 32.049069)
13 Nanjing Museum NM (118.831876, 32.045068)
14 Sun Yat-sen Mausoleum SYM (118.859411, 32.064341)
15 Confucius Temple CT (118.795398, 32.026971)
16 Nanjing Green Garden NGG (118.795398, 32.026971)

uated, which determines the capacity constraints for each day. The original
K —means algorithm randomly selects four locations as the initial centroid,
it calculates the distance between them and the corresponding centroid, and
finally if utilises the fitness function to arrange them to join the appropriate
cluster, as shown in Figure 8. However, our improved K —means algorithm
includes the capacity constraints of each cluster set, allowing the number of
locations in each cluster to be more balanced, as shown in Figure 9.

In the second phase, TPHA uses the re-designed GA to plan routes for the
four clusters. In order to test its performance, we downloaded the standard
dataset from TSPLIB (http://comopt.ifi.uniheidelberg.de/software/
TSPLIB95/).

The experimental results of the improved GA are subsequently compared with
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Fig. 7 Coordinates of the locations described in Table 2.

other typical algorithms. The related parameters are set via experiments as
follows: G = 2000, Ps;.. = 500, p. = 0.80, and p. = 0.1 The experimental
results are shown in Figure 10. Figure 11 depicts the comparison of the GA
experimental results with the Ant Colony Algorithm (ACA) [26] and the Near-
est Neighbour Method (NN) [27]. OHC is the best known solution, and the
deviation of the best found solution to the best known solution err is defined
as follows:

_ w(Best) —w(OHC)
o= w(OHC)

Note that a small error rate indicates that a better solution of the method has
been achieved.

(12)

As shown in Figure 11, the improved GA version clearly demonstrates
that better results are obtained compared to the Nearest Neighbour Method.
Although the error rate of ACA is lower than the improved GA, the time
complexity of ACA is O(Gn?m), where G represents the total number of it-
erations, n is the number of cities, and m the number of ants. On the other
hand, the time complexity of the improved GA is O(G Pkg;,., which is lower.
The integration of TPHA with the improved GA is utilised for the second
phase of the route plan. The related parameters are set as follows: G = 100,
Psi.. = 100, p. = 0.90, and p,, = 0.05.
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Fig. 8 Clustering of locations with the original K —means algorithm.

Table 3 Performance of TPHA and GA algorithms.

Algorithm  Time Distance
TPHA 2.442360s 0.9941
GA 10.698919s  1.1648

Figures 13 and 14 show that with the original GA the length of chromo-
some is longer, not only increasing the computation time and reducing the
convergence speed, but also increasing the total distance, as shown in Table 3.

5.2 Design of the Prototype

In this section, the design of a mobile guide system for tourists based on the

1189

Baidu electronic map SDK and Android 4.2 mobile platform is discussed.

As shown in Figure 14, the mobile guide system consists of the following

classes:

— Class MainActivity describes the completion of the Baidu electronic map
loading, including the verification of API key, the detection of network

states and the management of map life cycle.

— Class TPHA invokes the class MKsearchListener, which obtains the loca-

tion information, whilst GA carries out the path planning.



16 Xjaolong Xu et al.

32.16

32.14

T
1

3212

321k * * -

)
N
o
@
T
I

Longitude

32.06

32.04

3202

T
1

32

1186 118.65 18.7 118.75 118.8 118.85 118.9
Latitude

Fig. 9 Clustering of scenic spots with the improved K —means algorithm.

— Class ItemizedOverlay invokes the class GpsActivity to obtain the cur-
rent location, and marks it on the map.

— Class RouteOverlay is used to identify the route

GraphicsOverlay is utilised to show the path information on the Baidu

electronic map.

— Finally, getDistance() is used to obtain the associated cost.

Figures 15 and 16 show the four-days travel path planned with TPHA and
GA, respectively, demonstrating that TPHA has a better performance.

As shown in Figure 17, the distance of total route planned with TPHA is
150.7 km, while the distance of total route planned with GA is 159.4 km.

6 Conclusions

In this article, we have discussed the significance of MTSP, both from a theo-
retical and real-world applications point of view. In order to address the issues
raised by MTSP, we propose TPHA, which integrates improved K—means
and the re-designed GA to obtain the balanced and short-distance routes.
Furthermore, this work specifically focuses on the workload balance subject
to minimising the overall salesmen’s travelling distance. Experimental results
show that the proposed TPHA has a better performance in solving MTSP
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Fig. 10 Best routes with the improved GA: (a) Eil51, (b) Eil76, (c), Eil101, and (d)
Berlin52.

in;l;ilfl’ce orc ACA NNM The 11(1}1iroved
Best err Best err Best err

Eil51 426 435 2.11 453 6.34 443 3.74

Eil76 538 551 2.41 582 8.18 568 5.57

Eill101 629 682 8.42 715 13.6 693 9.65
Berlin52 7542 | 7543 0.01 7976 5.57 7644 1.35

Fig. 11 Comparison of the improved GA and other algorithms.
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Fig. 13 Routes planned for the 4 clusters with TPHA.

with lower system overheads, and a mobile guide system for tourists was im-
plemented to further demonstrate this.

Future research efforts will include the investigation of the time cost, the
traffic and other constraints in order to model more complex and dynamic
MTSP, whilst improving the performance and function of the route plan-
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Fig. 14 Classes of our mobile guide system.

ning algorithm. Furthermore, we are aiming to consider different locations
by analysing the corresponding datasets whenever available. This will be also
facilitated by integrating Text Mining techniques to extract information from
social media, blogs and general websites to validate the accuracy of the iden-
tified routes.
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With TPHA
Route Scenic spots Distance
Day 1 Starting point, NGG, YOGP, LSFP, ZF 58.4km
Day 2 Starting point, PP, NM, SYM, SGP 30.2km
Day 3 Starting point, HSZ, SRP, MM, YJT 27.4km
Day 4 Starting point, CT, YMC, MHVNM, 34.7km
MCL
With GA
Route Scenic spots Distance
Day 1 Starting point, SGP, ZF, LSFP, YOGP 60.3km
Day 2 Starting point, SYM, NM, CT, YMC 42.2km
Day 3 Starting point, HSZ, SRP, MM, YJT 27.4km
Day 4 Starting point, PP, MCL, MHVNM, 29.5km
NGG

Fig. 17 Detailed travel itinerary.
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