875 research outputs found

    High-bandwidth generation of duobinary and alternate-mark-inversion modulation formats using SOA-based signal processing

    Get PDF
    We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate

    All-optical modulation converter for on-off keying to duobinary and alternate-mark inversion at 42.6 Gbps

    Get PDF
    Advanced modulation formats have become increasingly important as telecoms engineers strive for improved tolerance to both linear and nonlinear fibre-based transmission impairments. Two important modulation schemes are Duobinary (DB) and Alternate-mark inversion (AMI) [1] where transmission enhancement results from auxiliary phase modulation. As advanced modulation formats displace Return-to-zero On-Off Keying (RZ-OOK), inter-modulation converters will become increasingly important. If the modulation conversion can be performed at high bitrates with a small number of operations per bit, then all-optical techniques may offer lower energy consumption compared to optical-electronic-optical approaches. In this paper we experimentally demonstrate an all-optical system incorporating a pair of hybrid-integrated semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) gates which translate RZ-OOK to RZ-DB or RZ-AMI at 42.6 Gbps. This scheme includes a wavelength conversion to arbitrary output wavelength and has potential for high-level photonic integration, scalability to higher bitrates, and should exhibit regenerative properties [2]

    The use of fluorescence resonance energy transfer to monitor dynamic changes of lipid–DNA interactions during lipoplex formation

    Get PDF
    AbstractFluorescence resonance energy transfer (FRET) was used to monitor interactions between Cy3-labeled plasmid DNA and NBD-labeled cationic liposomes. FRET data show that binding of cationic liposomes to DNA occurs immediately upon mixing (within 1 min), but FRET efficiencies do not stabilize for 1–5 h. The time allowed for complex formation has effects on in vitro luciferase transfection efficiencies of DOPE-based lipoplexes; i.e., lipoplexes prepared with a 1-h incubation have much higher transfection efficiencies than samples with 1-min or 5-h incubations. The molar charge ratio of DOTAP to negatively charged phosphates in the DNA (DOTAP+/DNA−) also affected the interaction between liposomes and plasmid DNA, and interactions stabilized more rapidly at higher charge ratios. Lipoplexes formulated with DOPE were more resistant to high ionic strength than complexes formulated with cholesterol. Taken together, our data demonstrate that lipid–DNA interactions and in vitro transfection efficiencies are strongly affected by the time allowed for complex formation. This effect is especially evident in DOPE-based lipoplexes, and suggests that the time allowed for lipoplex formation is a parameter that should be carefully controlled in future studies

    Estimation of trace gas fluxes with objectively determined basis functions using reversible-jump Markov chain Monte Carlo

    Get PDF
    Atmospheric trace gas inversions often attempt to attribute fluxes to a high-dimensional grid using observations. To make this problem computationally feasible, and to reduce the degree of under-determination, some form of dimension reduction is usually performed. Here, we present an objective method for reducing the spatial dimension of the parameter space in atmospheric trace gas inversions. In addition to solving for a set of unknowns that govern emissions of a trace gas, we set out a framework that considers the number of unknowns to itself be an unknown. We rely on the well-established reversible-jump Markov chain Monte Carlo algorithm to use the data to determine the dimension of the parameter space. This framework provides a single-step process that solves for both the resolution of the inversion grid, as well as the magnitude of fluxes from this grid. Therefore, the uncertainty that surrounds the choice of aggregation is accounted for in the posterior parameter distribution. The posterior distribution of this transdimensional Markov chain provides a naturally smoothed solution, formed from an ensemble of coarser partitions of the spatial domain. We describe the form of the reversible-jump algorithm and how it may be applied to trace gas inversions. We build the system into a hierarchical Bayesian framework in which other unknown factors, such as the magnitude of the model uncertainty, can also be explored. A pseudo-data example is used to show the usefulness of this approach when compared to a subjectively chosen partitioning of a spatial domain. An inversion using real data is also shown to illustrate the scales at which the data allow for methane emissions over north-west Europe to be resolved

    Cardiovascular Magnetic Resonance Imaging of Scar Development Following Pulmonary Vein Isolation: A Prospective Study

    Get PDF
    Aims Cardiovascular magnetic resonance (MR) provides non-invasive assessment of early (24-hour) edema and injury following pulmonary vein isolation (by ablation) and subsequent scar formation. We hypothesize that 24-hours after ablation, cardiovascular MR would demonstrate a pattern of edema and injury due to ablation and the severity would correlate with subsequent scar. Methods: Fifteen atrial fibrillation patients underwent cardiovascular MR prior to pulmonary vein isolation, 24-hours post (N = 11) and 30-days post (N = 7) ablation, with T2-weighted (T2W) and late gadolinium enhancement (LGE) imaging. Left atrial wall thickness, edema enhancement ratio and LGE enhancement were assessed at each time point. Volumes of LGE and edema enhancement were measured, and the circumferential presence of injury was assessed at 24-hours, including comparison with LGE enhancement at 30 days. Results: Left atrial wall thickness was increased 24-hours post-ablation (10.7±4.1 mm vs. 7.0±1.8 mm pre-PVI, p<0.05). T2W enhancement at 24-hours showed increased edema enhancement ratio (1.5±0.4 for post-ablation, vs. 0.9±0.2 pre-ablation, p<0.001). Edema and LGE volumes at 24-hours were correlated with 30-day LGE volume (R = 0.76, p = 0.04, and R = 0.74, p = 0.09, respectively). Using a 16 segment model for assessment, 24-hour T2W had sensitivity, specificity, and accuracy of 82%, 63%, and 79% respectively, for predicting 30-day LGE. 24-hour LGE had sensitivity, specificity, and accuracy of 91%, 47%, and 84%. Conclusions: Increased left atrial wall thickening and edema were characterized on cardiovascular MR early post-ablation, and found to correlate with 30-day LGE scar

    Accuracy of electrocardiographic criteria for atrial enlargement: validation with cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anatomic atrial enlargement is associated with significant morbidity and mortality. However, atrial enlargement may not correlate with clinical measures such as electrocardiographic (ECG) criteria. Past studies correlating ECG criteria with anatomic measures mainly used inferior M-mode or two-dimensional echocardiographic data. We sought to determine the accuracy of the ECG to predict anatomic atrial enlargement as determined by volumetric cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>ECG criteria for left (LAE) and right atrial enlargement (RAE) were compared to CMR atrial volume index measurements for 275 consecutive subjects referred for CMR (67% males, 51 ± 14 years). ECG criteria for LAE and RAE were assessed by an expert observer blinded to CMR data. Atrial volume index was computed using the biplane area-length method.</p> <p>Results</p> <p>The prevalence of CMR LAE and RAE was 28% and 11%, respectively, and by any ECG criteria was 82% and 5%, respectively. Though nonspecific, the presence of at least one ECG criteria for LAE was 90% sensitive for CMR LAE. The individual criteria P mitrale, P wave axis < 30°, and negative P terminal force in V1 (NPTF-V1) > 0.04s·mm were 88–99% specific although not sensitive for CMR LAE. ECG was insensitive but 96–100% specific for CMR RAE.</p> <p>Conclusion</p> <p>The presence of at least one ECG criteria for LAE is sensitive but not specific for anatomic LAE. Individual criteria for LAE, including P mitrale, P wave axis < 30°, or NPTF-V1 > 0.04s·mm are highly specific, though not sensitive. ECG is highly specific but insensitive for RAE. Individual ECG P wave changes do not reliably both detect and predict anatomic atrial enlargement.</p

    Intravascular ultrasound scanning improves long-term patency of iliac lesions treated with balloon angioplasty and primary stenting

    Get PDF
    AbstractPurpose: Underdeployment of an intravascular stent has been identified as a cause of restenosis or occlusion of a treated arterial lesion. Intravascular ultrasound (IVUS) has been shown to initially improve the anatomic and clinical stenting. The purpose of this study was to determine whether the use of IVUS increased long-term patency of this intervention. Methods: Between March 1992 and October 1995, 71 limbs (52 patients) with symptomatic aortoiliac occlusive disease underwent balloon angioplasty with primary stenting. IVUS and arteriography were used in 49 limbs (36 patients) to evaluate stent deployment. Arteriography alone was used in 22 limbs (16 patients) to evaluate stent deployment. Patients were captured prospectively in a vascular registry and retrospectively reviewed. Results: Mean age of patients treated with IVUS was 61.1 ± 9.0 years (range, 38-85) versus 70.0 ± 10.1 years (range, 57-87) in patients treated without IVUS (P <.01). There was no difference between the groups with respect to preoperative comorbidities, ankle-brachial indices, or number of stents per limb. Mean follow-up for IVUS patients was 62.1 ± 7.3 months (range, 15-81) and 57.9 ± 8.7 months (range, 8-80) for patients treated without IVUS (P = not significant). In 40% (20/49) of limbs, IVUS demonstrated inadequate stent deployment at the time of the original procedure. Kaplan-Meier 3- and 6-year primary patency estimates were 100% and 100% in the IVUS group and 82% and 69%, respectively, in limbs treated without IVUS (P <.001). There have been no secondary procedures performed in limbs treated with IVUS and a 23% (5/22) secondary intervention rate in the non-IVUS group (P <.05). Overall Kaplan-Meier survival estimates at 3 and 6 years for all patients were 84% and 67%, respectively. Conclusion: Balloon angioplasty and primary stenting of symptomatic aortoiliac occlusive lesions is a durable treatment option. Long-term follow-up of treated patients shows outcomes that are comparable with direct surgical intervention. IVUS significantly improved the long-term patency of iliac arterial lesions treated with balloon angioplasty and stenting by defining the appropriate angioplasty diameter endpoint and adequacy of stent deployment. (J Vasc Surg 2002;35:316-23.

    Quantifying the UK's carbon dioxide flux: An atmospheric inverse modelling approach using a regional measurement network

    Get PDF
    We present a method to derive atmosphericobservation-based estimates of carbon dioxide (CO 2 ) fluxes at the national scale, demonstrated using data from a network of surface tall-tower sites across the UK and Ireland over the period 2013-2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then combined a posteriori to determine net ecosystem exchange of CO 2 . Two different models, Data Assimilation Linked Ecosystem Carbon (DALEC) and Joint UK Land Environment Simulator (JULES), provide prior estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components. The Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a total annual net biospheric flux for the UK of 8±79 TgCO 2 yr -1 (DALEC prior) and 64±85 TgCO 2 yr -1 (JULES prior), where negative values represent an uptake of CO 2 . These biospheric CO 2 estimates show that annual UK biospheric sources and sinks are roughly in balance. These annual mean estimates consistently indicate a greater net release of CO 2 than the prior estimates, which show much more pronounced uptake in summer months
    • 

    corecore