10 research outputs found

    Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation

    Get PDF
    We present a new map depicting the first global biogeographic regionalization of Earth's freshwater systems. This map of freshwater ecoregions is based on the distributions and compositions of freshwater fish species and incorporates major ecological and evolutionary patterns. Covering virtually all freshwater habitats on Earth, this ecoregion map, together with associated species data, is a useful tool for underpinning global and regional conservation planning efforts (particularly to identify outstanding and imperiled freshwater systems); for serving as a logical framework for large-scale conservation strategies; and for providing a global-scale knowledge base for increasing freshwater biogeographic literacy. Preliminary data for fish species compiled by ecoregion reveal some previously unrecognized areas of high biodiversity, highlighting the benefit of looking at the world's freshwaters through a new framework.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Naturales y Muse

    Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation

    Get PDF
    We present a new map depicting the first global biogeographic regionalization of Earth's freshwater systems. This map of freshwater ecoregions is based on the distributions and compositions of freshwater fish species and incorporates major ecological and evolutionary patterns. Covering virtually all freshwater habitats on Earth, this ecoregion map, together with associated species data, is a useful tool for underpinning global and regional conservation planning efforts (particularly to identify outstanding and imperiled freshwater systems); for serving as a logical framework for large-scale conservation strategies; and for providing a global-scale knowledge base for increasing freshwater biogeographic literacy. Preliminary data for fish species compiled by ecoregion reveal some previously unrecognized areas of high biodiversity, highlighting the benefit of looking at the world's freshwaters through a new framework.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Naturales y Muse

    Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation

    Get PDF
    We present a new map depicting the first global biogeographic regionalization of Earth's freshwater systems. This map of freshwater ecoregions is based on the distributions and compositions of freshwater fish species and incorporates major ecological and evolutionary patterns. Covering virtually all freshwater habitats on Earth, this ecoregion map, together with associated species data, is a useful tool for underpinning global and regional conservation planning efforts (particularly to identify outstanding and imperiled freshwater systems); for serving as a logical framework for large-scale conservation strategies; and for providing a global-scale knowledge base for increasing freshwater biogeographic literacy. Preliminary data for fish species compiled by ecoregion reveal some previously unrecognized areas of high biodiversity, highlighting the benefit of looking at the world's freshwaters through a new framework.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Naturales y Muse

    Oxyropsis ephippia, a New Hypoptopomatine Catfish (Siluriformes: Loricariidae) from Guyana

    No full text
    Aquino, Adriana E., Sabaj PĂ©rez, Mark H. (2016): Oxyropsis ephippia, a New Hypoptopomatine Catfish (Siluriformes: Loricariidae) from Guyana. Zootaxa 4136 (1): 129-140, DOI: 10.11646/zootaxa.4136.1.

    Nucleotide sequence data confirm diagnosis and local endemism of variable morphospecies of Andean astroblepid catfishes (Siluriformes: Astroblepidae)

    Get PDF
    Phylogenetic analysis based on nuclear and mitochondrial DNA sequences was used to test the validity of morphospecies of catfishes of the family Astroblepidae inhabiting the southern-most limit of their Andean distribution in the upper Ucayali and upper Madre de Dios river basins. Population samples of morphospecies designated a priori on the basis of morphological features were further diagnosed by the presence of unique and unreversed molecular synapomorphies, thereby confirming species validity for seven of nine cases. Although each are distinguished by unique combinations of morphological features, two morphospecies (designated F and H) cannot be diagnosed on the basis of apomorphic changes in molecular sequence that did not also occur in other astroblepid morphospecies or outgroup taxa. Further, one morphospecies (species G) was recovered as nested within the assemblage of populations sampled from morphospecies F, whose morphological diagnosis does not involve unique or apomorphic characters. In contrast, the absence of corroborating molecular apomorphies for species H, otherwise recognized by distinctive and uniquely derived morphological characters, suggests a history of rapid divergence and insufficient time for fixation of genetic differences. Species sharing syntopic distributions were not recovered as sister groups, and in some cases species distributed in adjacent river drainage basins were not more closely related to one another than to species distributed in more distant drainages. Three independent instances were observed of sister-group relationships involving species distributed in both the Apurimac and Urubamba rivers (Ucayali drainage). These observations combine to suggest that the current distribution of astroblepid species in the southern region may have arisen via a complex history involving both divergence between and dispersal amongst drainage basins that is probably repeated numerous times throughout the Andean distribution of the group. © 2011 The Linnean Society of London

    Diversity and community structure of rapids-dwelling fishes of the Xingu River: Implications for conservation amid large-scale hydroelectric development

    No full text
    A recent boom in hydroelectric development in the world's most diverse tropical river basins is currently threatening aquatic biodiversity on an unprecedented scale. Among the most controversial of these projects is the Belo Monte Hydroelectric Complex (BMHC) on the Xingu River, the Amazon's largest clear-water tributary. The design of the BMHC creates three distinctly altered segments: a flooded section upstream of the main dam, a middle section between the dam and the main powerhouse that will be dewatered, and a downstream section subject to flow alteration from powerhouse discharge. This region of the Xingu is notable for an extensive series of rapids known as the Volta Grande that hosts exceptional levels of endemic aquatic biodiversity; yet, patterns of temporal and spatial variation in community composition within this highly threatened habitat are not well documented. We surveyed fish assemblages within rapids in the three segments impacted by the BMHC prior to hydrologic alteration, and tested for differences in assemblage structure between segments and seasons. Fish species richness varied only slightly between segments, but there were significant differences in assemblage structure between segments and seasons. Most of the species thought to be highly dependent on rapids habitat, including several species listed as threatened in Brazil, were either restricted to or much more abundant within the upstream and middle segments. Our analysis identified the middle section of the Volta Grande as critically important for the conservation of this diverse, endemic fish fauna. Additional research is urgently needed to determine dam operations that may optimize energy production with an environmental flow regime that conserves the river's unique habitat and biodiversity. © 2018 Elsevier Lt

    Diversity and community structure of rapids-dwelling fishes of the Xingu River: Implications for conservation amid large-scale hydroelectric development

    No full text
    A recent boom in hydroelectric development in the world's most diverse tropical river basins is currently threatening aquatic biodiversity on an unprecedented scale. Among the most controversial of these projects is the Belo Monte Hydroelectric Complex (BMHC) on the Xingu River, the Amazon's largest clear-water tributary. The design of the BMHC creates three distinctly altered segments: a flooded section upstream of the main dam, a middle section between the dam and the main powerhouse that will be dewatered, and a downstream section subject to flow alteration from powerhouse discharge. This region of the Xingu is notable for an extensive series of rapids known as the Volta Grande that hosts exceptional levels of endemic aquatic biodiversity; yet, patterns of temporal and spatial variation in community composition within this highly threatened habitat are not well documented. We surveyed fish assemblages within rapids in the three segments impacted by the BMHC prior to hydrologic alteration, and tested for differences in assemblage structure between segments and seasons. Fish species richness varied only slightly between segments, but there were significant differences in assemblage structure between segments and seasons. Most of the species thought to be highly dependent on rapids habitat, including several species listed as threatened in Brazil, were either restricted to or much more abundant within the upstream and middle segments. Our analysis identified the middle section of the Volta Grande as critically important for the conservation of this diverse, endemic fish fauna. Additional research is urgently needed to determine dam operations that may optimize energy production with an environmental flow regime that conserves the river's unique habitat and biodiversity. © 2018 Elsevier Lt
    corecore