238 research outputs found

    The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mouse skeletal muscle is composed of four distinct fiber types that differ in contractile function, number of mitochondria and metabolism. Every muscle type has a specific composition and distribution of the four fiber types. To find novel genes involved in specifying muscle types, we used microarray analysis to compare the gastrocnemius with the quadriceps from mice fed a low fat diet (LFD) or high fat diet (HFD) for 8 weeks. Additional qPCR analysis were performed in the gastrocnemius, quadriceps and soleus muscle from mice fed an LFD or HFD for 20 weeks.</p> <p>Results</p> <p>In mice fed the 8-week LFD 162 genes were differentially expressed in the gastrocnemius <it>vs</it>. the quadriceps. Genes with the strongest differences in expression were markers for oxidative fiber types (e.g. <it>Tnni1</it>) and genes which are known to be involved in embryogenesis (<it>Dkk3</it>, <it>Hoxd8</it>,<it>Hoxd9 </it>and <it>Tbx1</it>). Also <it>Dkk2, Hoxa5, Hoxa10, Hoxc9, Hoxc10, Hoxc6 </it>and <it>Tbx15 </it>were detectably, but not differentially expressed in adult muscle tissue. Expression of differentially expressed genes was not influenced by an 8-week or 20-week HFD. Comparing gastrocnemius, quadriceps and soleus, expression of <it>Hoxd8 </it>and <it>Hoxd9 </it>was not related with expression of markers for the four different fiber types. We found that the expression of both <it>Hoxd8 </it>and <it>Hoxd9 </it>was much higher in the gastrocnemius than in the quadriceps or soleus, whereas the expression of <it>Dkk3 </it>was high in quadriceps, but low in both gastrocnemius and soleus. Finally, expression of <it>Tbx1 </it>was high in quadriceps, intermediate in soleus and low in gastrocnemius.</p> <p>Conclusions</p> <p>We found that genes from the Dkk family, Hox family and Tbx family are detectably expressed in adult mouse muscle. Interestingly, expression of <it>Dkk3</it>, <it>Hoxd8, Hoxd9 </it>and <it>Tbx1 </it>was highly different between gastrocnemius, quadriceps and soleus. In fact, every muscle type showed a unique combination of expression of these four genes which was not influenced by diet. Altogether, we conclude that genes important for embryogenesis identify mouse muscle types in a diet-independent and fiber type-unrelated manner.</p

    Cosmology as a search for overall equilibrium

    Get PDF
    9 pages, 1 figure.-- The original publication is available at www.springerlink.com.In this letter we will revise the steps followed by A. Einstein when he first wrote on cosmology from the point of view of the general theory of relativity. We will argue that his insightful line of thought leading to the introduction of the cosmological constant in the equations of motion has only one weakness: The constancy of the cosmological term, or what is the same, its independence of the matter content of the universe. Eliminating this feature, I will propose what I see as a simple and reasonable modification of the cosmological equations of motion. The solutions of the new cosmological equations give place to a cosmological model that tries to approach the Einstein static solution. This model shows very appealing features in terms of fitting current observations.Peer reviewe

    Early-onset preeclampsia, plasma microRNAs, and endothelial cell function

    Get PDF
    Background: Preeclampsia is a hypertensive pregnancy disorder in which generalized systemic inflammation and maternal endothelial dysfunction are involved in the pathophysiology. MiRNAs are small noncoding RNAs responsible for post-transcriptional regulation of gene expression and involved in many physiological processes. They mainly downregulate translation of their target genes. Objective: We aimed to compare the plasma miRNA concentrations in preeclampsia, healthy pregnant women, and nonpregnant women. Furthermore, we aimed to evaluate the effect of 3 highly increased plasma miRNAs in preeclampsia on endothelial cell function in vitro. Study Design: We compared 3391 (precursor) miRNA concentrations in plasma samples from early-onset preeclamptic women, gestational age–matched healthy pregnant women, and nonpregnant women using miRNA 3.1. arrays (Affymetrix) and validated our findings by real-time quantitative polymerase chain reaction. Subsequently, endothelial cells (human umbilical vein endothelial cells) were transfected with microRNA mimics (we choose the 3 miRNAs with the greatest fold change and lowest false-discovery rate in preeclampsia vs healthy pregnancy). After transfection, functional assays were performed to evaluate whether overexpression of the microRNAs in endothelial cells affected endothelial cell function in vitro. Functional assays were the wound-healing assay (which measures cell migration and proliferation), the proliferation assay, and the tube-formation assay (which assesses formation of endothelial cell tubes during the angiogenic process). To determine whether the miRNAs are able to decrease gene expression of certain genes, RNA was isolated from transfected endothelial cells and gene expression (by measuring RNA expression) was evaluated by gene expression microarray (Genechip Human Gene 2.1 ST arrays; Life Technologies). For the microarray, we used pooled samples, but the differently expressed genes in the microarray were validated by real-time quantitative polymerase chain reaction in individual samples. Results: No significant differences (fold change 1.2 with a false-discovery rate <0.05) were found in miRNA plasma concentrations between healthy pregnant and nonpregnant women. The plasma concentrations of 26 (precursor) miRNAs were different between preeclampsia and healthy pregnancy. The 3 miRNAs that were increased with the greatest fold change and lowest false-discovery rate in preeclampsia vs healthy pregnancy were miR-574-5p, miR-1972, and miR-4793-3p. Transfection of endothelial cells with these miRNAs in showed that miR-574-5p decreased (P<.05) the wound-healing capacity (ie, decreased endothelial cell migration and/or proliferation) and tended (P<.1) to decrease proliferation, miR-1972 decreased tube formation (P<.05), and also tended (P<.1) to decrease proliferation, and miR-4793-3p tended (P<.1) to decrease both the wound-healing capacity and tube formation in vitro. Gene expression analysis of transfected endothelial cells revealed that miR-574-5p tended (P<.1) to decrease the expression of the proliferation marker MKI67. Conclusion: We conclude that in the early-onset preeclampsia group in our study different concentrations of plasma miRNAs are present as compared with healthy pregnancy. Our results suggest that miR-574-5p and miR-1972 decrease the proliferation (probably via decreasing MKI67) and/or migration as well as the tube-formation capacity of endothelial cells. Therefore, these miRNAs may be antiangiogenic factors affecting endothelial cells in preeclampsia

    Associations between Common Variants in Iron-Related Genes with Haematological Traits in Populations of African Ancestry.

    Get PDF
    BACKGROUND: Large genome-wide association (GWA) studies of European ancestry individuals have identified multiple genetic variants influencing iron status. Studies on the generalizability of these associations to African ancestry populations have been limited. These studies are important given interethnic differences in iron status and the disproportionate burden of iron deficiency among African ancestry populations. METHODS: We tested the associations of 20 previously identified iron status-associated single nucleotide polymorphisms (SNPs) in 628 Kenyans, 609 Tanzanians, 608 South Africans and 228 African Americans. In each study, we examined the associations present between 20 SNPs with ferritin and haemoglobin, adjusting for age, sex and CRP levels. RESULTS: In the meta analysis including all 4 African ancestry cohorts, we replicated previously reported associations with lowered haemoglobin concentrations for rs2413450 (β = -0.19, P = 0.02) and rs4820268 (β = -0.16, P = 0.04) in TMPRSS6. An association with increased ferritin concentrations was also confirmed for rs1867504 in TF (β = 1.04, P = <0.0001) in the meta analysis including the African cohorts only. CONCLUSIONS: In all meta analyses, we only replicated 4 of the 20 single nucleotide polymorphisms reported to be associated with iron status in large GWA studies of European ancestry individuals. While there is now evidence for the associations of a number of genetic variants with iron status in both European and African ancestry populations, the considerable lack of concordance highlights the importance of continued ancestry-specific studies to elucidate the genetic underpinnings of iron status in ethnically diverse populations

    Age-associated Impairment of the Mucus Barrier Function is Associated with Profound Changes in Microbiota and Immunity

    Get PDF
    Aging significantly increases the vulnerability to gastrointestinal (GI) disorders but there are few studies investigating the key factors in aging that affect the GI tract. To address this knowledge gap, we used 10-week- and 19-month-old litter-mate mice to investigate microbiota and host gene expression changes in association with ageing. In aged mice the thickness of the colonic mucus layer was reduced about 6-fold relative to young mice, and more easily penetrable by luminal bacteria. This was linked to increased apoptosis of goblet cells in the upper part of the crypts. The barrier function of the small intestinal mucus was also compromised and the microbiota were frequently observed in contact with the villus epithelium. Antimicrobial Paneth cell factors Ang4 and lysozyme were expressed in significantly reduced amounts. These barrier defects were accompanied by major changes in the faecal microbiota and significantly decreased abundance of Akkermansia muciniphila which is strongly and negatively affected by old age in humans. Transcriptomics revealed age-associated decreases in the expression of immunity and other genes in intestinal mucosal tissue, including decreased T cell-specific transcripts and T cell signalling pathways. The physiological and immunological changes we observed in the intestine in old age, could have major consequences beyond the gut.</p

    Lifestyle and Horizontal Gene Transfer- Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota

    Get PDF
    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem

    Lifestyle and Horizontal Gene Transfer- Mediated Evolution of \u3ci\u3eMucispirillum schaedleri\u3c/i\u3e, a Core Member of the Murine Gut Microbiota

    Get PDF
    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem

    A Logical Study of Distributed Transition Systems

    Get PDF
    AbstractWe extend labelled transition systems to distributed transition systems by labelling the transition relation with a finite set of actions, representing the fact that the actions occur as a concurrent step. We design an addition-based temporal logic in which one can explicity talk about steps. The logic is studied to establish a variety of positive and negative results in terms of axiomatizability and decidability. Our positive results show that the step notion is amenable to logical treatment via standard techniques. They also help us to obtain a logical characterization of two well known models for distributed systems: labelled elementary net systems and labelled prime event structures. Our negative results show that demanding deterministic structures when dealing with a "non-interleaved" notion of transitions is, from a logical standpoint, very expressive. They also show that another well known model of distributed systems called asynchronous transition systems exhibits a surprising amount of expressive power in a natural logical setting
    corecore