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We extend labelled transition systems to distributed transition
systems by labelling the transition relation with a finite set of actions,
representing the fact that the actions occur as a concurrent step. We
design an action-based temporal logic in which one can explicitly talk
about steps. The logic is studied to establish a variety of positive and
negative results in terms of axiomatizability and decidability. Our
positive results show that the step notion is amenable to logical treat-
ment via standard techniques. They also heip us to obtain a logical
characterization of two well known models for distributed systems:
labelled elementary net systems and labelled prime event structures.
Qur negative results show that demanding deterministic structures
when dealing with a ‘non-interleaved’” notion of transitions is, from a
logical standpoint, very expressive. They also show that another well
known model of distributed systems called asynchronous transition
systems exhibits a surprising amount of expressive power in a natural
logical setting. € 1995 Academic Press, Inc.

INTRODUCTION

Transition systems are a simple and unifying model for
representing the behaviour of distributed systems. They are
used to provide the operational semantics of various process
algebras such as CCS [ Mil]. A number of other models of
distributed systems such as elementary net systems [Thi],
prime event structures [ Win], and Petri nets [Rei] also
have transition systems asssociated with them in a natural
way to explain their operational behaviour. Consequently, a
variety of logics that have been proposed to reason about
the behaviour of distributed systems are based on models
built out of transition systems [ Pnu, ES, HM]. A classic
and powerful example of such logics is the propositional
u-calculus [ Koz].

* Research supported in part by NSF grant CCR 92-08437.

The transition systems that are used in such applications
are, however, sequential. A (labelled) transition in these
transition systems is a triple (s, a,s’) denoting that the
system can perform the (single) action « at the state s
and, as a result, enter the state s’. Thus it is the so-called
interleaved behaviours of distributed systems that are
represented by such transition systems.

It has been observed by various researchers [ BC, DM,
NRT] that concurrency can be more explicitly represented
by enriching the transition relation, for instance by putting
more information on the labels of transitions. One of the
simplest ways of doing so is to consider transitions of the
form (s, u, '), where u is a finite ser of actions. The idea is
that the set of actions in u can occur independently of each
other (not necessarily simultaneously) at the state s and
when they have all occurred, the resulting state is s’

The aim of this paper is to study the logical consequences
of admitting such an enriched transition relation. In order
to focus attention on the notion of steps we design a
“minimal” action-based temporal logic in which one can
explicitly talk about steps and which is just about rich
enough to make life interesting. We use “step-based” tran-
sition systems as Kripke frames to construct models for this
logic. We then bring out the logical properties of the step
notion by establishing a variety of positive and negative
results in terms of axiomatizability and decidability.

To bring out the specific results, the rest of the paper is
organized as follows. In the next section we introduce dis-
tributed transition systems which are transition systems
based on concurrent steps. In the literature some other types
of transition systems have also been called distributed
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transition systems [ DM, Sta]. We first explain the condi-
tions imposed on our distributed transition systems which
ensure that the notion of a step indeed captures concurrency
in a faithful fashion. We then show how two well-known
models of concurrency, namely, prime event structures and
elementary net systems, give rise to distributed transition
systems in a natural way.

In Section 2, the logical language is introduced and its
semantics is defined in terms of models whose underlying
Kripke frames are distributed transition systems. We then
propose a complete axiomatization of the valid formulas of
this logic. The completeness proof is based on standard
filiration techniques borrowed from research on PDL
(Propositional Dynamic Logic} [ KP]. A consequence of
the completeness argument is that the satisfiability problem
for this logic is decidable in nondeterministic exponential
time. On the other hand, we have a deterministic exponen-
tial time lower bound.

In Section 3 we establish the somewhat surprising result
that our logic cannot separate the class of models based on
(distributed transitions yielded by) prime event structures
from the general class of models. As a result, the axiomatiza-
tion in Section 2 is complete for the restricted class as well.
Using the well-known relationships between elementary net
systems and prime event structures [ NPW] we then show
that similar results can also be established for the subclass
of models based on elementary net systems.

Starting from Section 4 we begin to study subclasses of
distributed transition systems and establish a sequence
of (predominantly negative) results about subclasses of
distributed transition systems. Section 4 shows that the set
of valid formulas over the class of deterministic models can
be axiomatized in a simple (and finitary) fashion. The com-
pleteness argument is quite involved; the reason being, as
we show in Section 5, that validity is not decidable. Here
and in subsequent sections we make heavy use of the
negative results based on domino problems due to Harel
[Har857].

The results established so far are based on distributed
transition systems over an infinite alphabet set. Due to the
unusual mixture of modalities in our logic, there is a good
deal of difference between finite and infinite alphabets. This
is especially so in the presence of determinacy. This is
brought out in Section 6. We show that the satisfiability
problem over the class of deterministic models is X'}-hard, if
we restrict the set of actions to be a finite set (but containing
at least two elements!). As a result, validity over this class of
models is not axiomatizable. In the next section we show
that the satisfiability problem over the class of finite deter-
ministic models is r.e.-hard and hence not decidable. Once
again, an easy consequence is that validity over this class of
models is not axiomatizable.

The proof techniques that we develop to establish our
results indicate that various generalizations are possible.

On the positive side, the results of Section 2 and Section 3
go through—with some additional machinery—even if we
replace steps (i.e., finite sets) with finite multisets or finite
pomsets [ Pra86] as labels of transitions. On the negative
side, it turns out the various undecidability results go
through if we use, instead of deterministic distributed tran-
sition systems, transition systems based on fraces [ Maz].
These additional negative results are presented in Section 8.
The lesson to be drawn here is that in the presence of con-
currency (as captured by steps) it is not only determinacy but
even a kind of partial commutativity property (implied by the
presence of steps) which makes the logic very expressive.

In Section 9 we point out how the study that we have
carried out can also be done for a natural generalization of
PDL. We also sketch briefly how a more powerful modality
based on the notion of steps can lead to a finitary axiomatiza-
tion of validity over the general class of models. In the con-
cluding section, we discuss related literature in more detail.

A logic for distributed transition systems was first studied
in [LRT], where only a finite alphabet was considered.
Theorem 6.5 was proved in that paper. The high
undecidability of the logic for deterministic distributed
transition systems over a finite alphabet (Theorem 6.10)
was proved in [ Parikh].

1. DISTRIBUTED TRANSITION SYSTEMS

In this section we introduce distributed transition systems
which will serve as the frames for our logic. We will show
how such transition systems arise in the study of two well-
known models of distributed systems.

Recall that a (sequential) transition system is a triple
TS = (S, 2, —)where 5is a set of states, X is a set of actions
and -=SxX xS is the (labelled) transition relation. If
(s, a, s’) e — then the idea is that the action a can occur at
state s and, as a result, the system assumes the state s'.

The essential feature of a distributed transition system is
that the transition relation i1s generalized to (s, u, s'), where
u is a finite set of actions. The actions in u are interpreted as
a concurrent step. This means that further conditions have
to be placed on the transition relation.

We will use the notation g( X) for the powerset of a set X
and g g,(X) for the set of finite subsets of X.

DEerINITION 1.1. A distributed transition system (dts) is a
triple DTS = (S, £, —») where
1. Sis aset of states
2. ZXis aset of actions
3. »SSxpu(Z)xS is the step transition relation
satisfying for all s, s' in S
(a) s ¢ iffs=v.
(b) for all ue g (X), if s~ 5 then there exists a
function [ g(u)— S such that /() =s, f(u)=ys', and for
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FIG. 1. An {a, b, c}-cube.

every v, S v, Su such that v, —v, #u, it is the case that
£ — )
- {22).

flo) ——

The function fis said to be a u-cube. We will let # [u, X]
denote the set of functions from g{u) into the set X. As in
the above definition, we will often write s 2> s’ instead of
(s, u, s') € —. The letters u, v with or without subscripts will
range over g;.(Z). For ae 2, we will also write % instead
of 44,

Figure | is a graphical representation of an {a, b, c}-
cube. The nodes of the graph represent the states of the
system. The edges, labelled by actions from Z, reflect the
transition relation —. To avoid cluttering up the pictures,
when we show a concurrent step, we do not display all the
smaller substeps but only the actions (steps of size 1). This
convention is followed in Fig. 1 and all subsequent figures.
Where 2 is clear from the context, we will often display a dts
as just an ordered pair (S, —) and call it a dts over 2.

Suppose s~ 5’ in a dts. Then the idea is that the actions
in u can occur at s with no order over their occurrences; and
when they have all occurred, the resulting state is s'. We say
that the step u is enabled at s. The existence of the u-cube
guarantees that this mutual independence of the actions in
u at s holds at all the states reached through a part of the
step for the “residual” substeps.

It is important to note that clause (3.b) in the definition
of a dts is merely an implication. The existence of a u-cube
does not guarantee the existence of a concurrent step.
Figure 2 shows all the actions required for an {a, b} step,

FIG. 2. A dts without any concurrent step.

FIG. 3. A nondeterministic dts.

but there is no concurrent step in the picture. All the induc-
tively smaller substeps of a concurrent u-step may exist, but
this may be accidental. It is the u arrow that shows that the
substeps form part of a concurrent step.

This is a characteristic of partial order models of
distributed systems in which concurrency is not identified
with nondeterministic interleaving. In fact it is possible at
the same state to have a concurrent step as well as an inter-
leaving of the step performed but leading to two different
states. This is illustrated in Fig. 3. We will show later
how this arises in some typical partial order models of
concurrency.

Further, the u-cube guarantees more than the fact that a
step can be broken up into all possible substeps. To bring
this out let us consider replacing clause (3.b) in the defini-
tion by:

e Foralls,s' in S, forallue p4,{2), if s — s’ then there
exists a function f in F[u, S] such that f(@)=s and
f(u)y=s" and for every v<u, it is the case that s——
flo)2=5 5.

For the transition system in Fig. 4, we can consistently
have an {a, b, ¢} step between s and s, if we accept this
weaker condition (and fill in all the intermediate substeps),
but there is no {a, b, c}-cube fin the sense of Definition 1.1,
since f(4) cannot be assigned a suitable value.

FIG. 4. A non-cube.
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FIG. 5. An event structure.

An important notion in transition systems is that of
reachability. Given the transition system 7S =(S, X, —),
we define the reachability set of sq€ S, denoted #4(s,), as
the least subset of S containing s, satisfying

Ifs e Rps(sy), a€ X, and s -5 &', then 5" € Rr(s,).

We write #(s,) if the underlying transition system is clear
from the context.

TS = (S, —, 5,) 1s said to be a pointed dts if (S, —) is a
dts, so€ S, and S = Zrg(sg).

In this paper, we only consider countable dis’s, that is, in
TS=(S,2,—), 8, 2, and — are all at most countable.

We have chosen the strong definition of dts’s after
examining a number of partial order models of distributed
systems. We will consider two such models: event structures
and net systems. Our presentation will be brief and the
interested reader is referred to [ Win, Thi, NRT] for more
background material.

A prime event structure is a triple ES = (E, <, # ) where

« Eis a set of event occurrences

« S EXE is a partial ordering relation called the
causality relation.

e« # CExE is an irreflexive and symmetric relation
called the conflict relation.

e # isinherited via < in the sense that e, # e, and e, < e,
imply e, #e, for every e, €,, e;in E.

Figure 5 is an example of an event structure. The squiggly
lines represent the “minimal” elements of the # relation.
The causality relation is shown in the form of the associated
Hasse diagram. The # relation is then uniquely determined
by the last part of the definition above. In this event
structure, e, # e, because e; #e, < e,.

Events which are not ordered by < and not in conflict are
interpreted as being concurrent. Formally for the event
structure ES = (E, <, #), we define cops < E x E as:

e, cogs €, 1ffnot (e, <e,ore,<e,ore #e,).

We will drop the subscript if the event structure ES is under-
stood from the context. For example, in Fig. 5, e, co ¢,.

An event structure is said to be finitary if every event has
at most a finite number of events causing it. For formalizing
this idea and for defining the notion of a state it will be
convenient to adopt the following notation.

Let ES=(F, <, #) be an event structure and X< E.
Then | X is defined to be

{e'|Jee X:e' <e).

In case X = {e} we will write | e instead of | {e}. Now ES
is finitary iff [e is finite for every e in E. In this paper we
consider only finitary event structures.

For an event to occur in a computation all the events
that cause it must have occurred. No two events that are in
conflict can both occur in a computation. These considera-
tions lead to the following notion of “state” for an event
structure.

Let ES=(E, <, #) be an event structure. Then x < E is
a configuration iff

(1) x=|x
(i) (xxx)n#=¢

(downward closed)

(conflict-free).

Let Cs denote the set of finite configurations of the event
structure ES = (E, <, # ). The occurrence of an event or a
finite set of concurrent events causes the configuration to
change, in effect giving a transition system. Define now the
step transition relation — S CpoX @4, (E) % Cgg of ES
(over E) as

xS xiffx¥=xvu,xnu=g and

Yv S u: x U vis a configuration.

PROPOSITION 1.2, (Cpg, E, —gg) is a dis.

Proof. It suffices to verify that (Cgg, E, — ) satisfies
the step condition. For convenience, we will write — ¢ as —
through the rest of the proof.

Clearly x 2> x'iff x = x' for every x, x" in Cgg. So assume
that u # & and x =5 x’. Define fe # [u, Cgs] by

flvy=xvv, forall veuw

Clearly f is well defined and f(¥)=x and f(u)=x". Tt is
easy to verify that fis in fact a u-cube.

Note that the dts produced by the event structure is
deterministic. In applications, one often works with
labelled event structures. We can also associate with
the labelled event structure a dts over the label set.
This observation will help establish one of the results
of this paper (Section 3). Let 2 be a set of labels. A
Z-labelled event structure is a quadruple ES = (E, <, #,¢),
where
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e (E, <, #) is an event structure called the underlying
event structure of ES.

o ¢: E— Zis the labelling function.

The labelling function ¢ can be extended pointwise to
finite subsets of E.

We assume that the notions we have so far developed for
event structures are transported to labelled event structures
via their underlying event structures in the obvious way.
A slight hitch is that in associating a dts over X' with a
J-labelled event structure, concurrent steps have to be
defined using multisets rather than sets. We would like to
stick to the simpler notation of sets, which we do in this
paper, using “concurrency preserving” labelling functions.
However, our results do not depend upon this and can be
generalized if required.

Let ES=(E, <, #,¢) be a Z-labelled event structure.
Then ¢ is said to be concurrency preserving in case e, cogs e,
implies ¢(¢,) # $(e,) for every e, e, in E. Suppose ES is
labelled preserving concurrency. Let

TSps=(Cps, Z, =>gg), where

=ps & {(x, plu), X') | (x, u, X' )€ =g},

ProPOSITION 1.3, TS is a dts over X.

Proof. Follows easily from the fact that (Cgg, —gs) is a
dts over £. |}

Henceforth, by a “labelled event structure” we shall mean
a finitary event structure with a concurrency preserving
labelling function.

Next we wish to show that elementary net systems which
are a basic model in net theory also give rise to dts’s.

An elementary net systemisatuple 4" =(B, E, F, ¢;,) where

e N, =(B,E, F)is called the underlying net of A4". B is

a set of conditions and E a set of events (disjoint from B). The
flow relation F< (B x E)u (Ex B) satisfies

VxeBUE:3ye EuB:(x,y)eF or (y,x)eF.

e ¢, < B is the initial case.

in —

For e in E we let “e denote the set of pre-conditions and
e the set of post-conditions of e, defined as:

e {b]| (b e)eF}
e {b| (e b)eF}.

For a subset of events X< E, "X and X* are defined by
taking the pointwise union.

Figure 6 is an example of an elementary net system. We
have used the conventional graphical notation for nets—
conditions are represented by circles, events by boxes and

643:119:1-7
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FIG. 6. An elementary net system.

the flow relation by directed arcs. The “marked” conditions
denote the initial case ¢;,.

A state of a net system—usually called a case—consists of
a subset of the conditions holding concurrently. An event
can occur at a case iff all its pre-conditions hold and none
of its post-conditions do at the case. When an event occurs
all its pre-conditions cease to hold and all its post-condi-
tions begin to hold. A step of events can occur at a case—as
a concurrent step—if each of them can occur individually
and their F-neighbourhoods are pairwise disjoint. These
ideas can be formalized as follows:

Let N=(B, E, F) be a net. Then /nd, < E x E is given by

e, Indye, ff ("e;ue Y n(e,ue,’)=.

The step transition relation —, S @(B) x g (E) x @(B) is
given by
—c=u"

c¢ ffc—c'="u, ¢

VYe,,e,cure,=e; of eylndy e,

Note that if c = B and ‘e S c but ¢*n ¢ # (J, then e is not
enabled at c.

Let .4"=(B, E, F, ¢;,) be an elementary net system and
—, the step transition relation of the underlying net
N=(B, E, F). Then C . is the state space of .4 and it is the
least subset of ¢(B) containing ¢;, and satisfying:

IfceC and(c,u,c'ye—»ythenc' e C (..

Let — . be — restricted to C X @ (E}x C ..

ProrosiTion 14. (C ., E, — ) is a dts over F.

Proof. Suppose (¢, u, ¢')e — .. Define fe #[u, C -] by
flvy=(curv)— ", for every v < u. Now it is easy to verify
that Definition 1.1 is satisfied. §
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As in the case of event structures, the dts associated with
a net system is deterministic, and it will be useful to consider
labelled net systems. A X-labelled elementary net system
A"=(B,E,F, c,,$) is defined analogously to a labelled
event structure. Our labelling function will be required to
preserve concurrency.

Let .14 =(B, E, F, ¢;;) be a net system. Thenco .S ExE
1s given by

o ={(€1.€2)|elrﬁezand

e, e C (e, {e), €5}, 'V e— -}

Note that co (< /nd, and in general this inclusion is
proper.
We can now define the structure

TS,o‘:(C.(‘»Z' =) where

= = {(c,pu), ) (c,u, cye— .}

ProposITION 1.5. TS, isa dts over Z.

Thus elementary net systems also lead to dts’s in a natural
way.

2. A LOGIC FOR DISTRIBUTED TRANSITION SYSTEMS

In this section we introduce the logic which will be the
focal point of our study. With distributed transition systems
playing the role of Kripke frames, we first develop the
semantics of the language. We then provide a complete
axiomatization of the set of valid formulas and show that
the logic is decidable.

Fix a countably infinite set of atomic propositions
P={py.p,...} and a countably infinite alphabet of atomic
actions 2. The formulas of our language Step-TL (temporal
logic with concurrent steps) are specified inductively as:

« Every member of P is a formula.

o If « and f§ are formulas then so are ~a, xv f§, Ca, and
{udw, for ue pg,(2).

We let «, f, y, & with or without subscripts range over
formulas. When u is a singleton, say u = {a}, we write (a) «
instead of {{a} > a.

A model is a pair M = (TS, V), where TS = (S, —)isadts
over L and V: S — @(P) is a valuation function.

Let M = ((S, =), V) be amodel, s € S. Then the notion of
« holding at the state s in the model is denoted by M, 5 = a
and is defined inductively as follows:

e M,skE=piff pe Vis).
o M, sk ~aiff M, spa
e M,sEavfif M,sl=aor M,sk= f.

o M, s <aiff there exists 5" € #(s) such that M, s’ = a.

e M, sk (uya iff there exists 5’ such that s> s’ and
M, s =

The derived connectives of propositional calculus such as A,
> and = are defined in terms of ~ and v in the usual way. We
let True stand for the formula p, v ~p, and False for ~ True.

The derived modalities OJ and [ u] are given by

def
o= ~ O ~a

[u]o(d=ef ~{uy ~a.
It can easily be checked that

M, s k= Oaiff forevery s e #(s), M, s' = a
M, s [u]aiff forevery s' suchthat s> 5" M, 5’ =«

The formula « is satisfiable if M, sk=« in some model
M=((S, »), V) with se 8. « is valid in the model M if
M, s = a for every s€ S. ais valid (denoted = a) if a is valid
in every model M.

Step-TL can be used to express a variety of properties
concerning the occurrence patterns of actions in a dts. A
typical safety property would be O[ {a,, a,} ] False stating
that at no reachable (global) state can the actions a, and a,
occur concurrently. Clearly liveness properties can also be
stated in the usual fashion. For example, if the dts models an
elementary net system then < {a) True expresses the fact
that from every reachable case (state) it is possible to obtain
a case at which the action a is enabled.

We now propose an axiomatization of the set of vahd
formulas.

Axiom System ND.

Axiom Schemes.

(A0) All the substitutional instances of the tautologies
of PC
(Al) O(eop)>(Ca20f)
(A2) Oas[u]laanOD0x
(A3) [ul(a=>p)>([u)a>[u]B)
(Ad) a={(J>a.
Inference Rules.
oo f o
(MP) 7 (TG) Tw

Let I'={y, .., .} and a e 1.

(Step) PIV o VY _
yas <A<v> A <v'—v>f(v')>
fef‘(?u[)lf_:a’!‘]. v u retr’'cu
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As usual, by a rhesis we will mean a formula a which is
derivable in a finite number of steps from the axioms using
the inference rules. This is denoted by |-a. a is said to be
consistent if ~a is not a thesis. The finite set of formulas
{ay, .., a,} is consistent if their conjunction a; A ... A, is.
A set of formulas is consistent if every finite subset of it is.

Most of our axiom schemes and inference rules are
standard or easy adaptations of standard ones [ Kré, Pnu].
Characteristic of our system are the axiom scheme (A4) and
the inference rule (Step). The former specifies that each state
can be reached from itself through the empty step.
Moreover, the empty step performed at a state leads back to
the same state.

Note that (Step) represents a finite presentation of an
infinite set of inference rules: one for each set of formulas 7.
In essence (Step) says that if (u) « holds at a state s in the
model M, then there exists a state s’ such that « holds at s’
and there is a u-cube from s to s’. (Think of I" as a finite set
of “descriptions” of states of a dts.)

Consider the following simple way of stating this:

Cudas A (vdlu—v)a

rsu

This formula would be a thesis in our system. It merely
states that a step can be arbitrarily broken up into substeps.
However, there is more to the semantics of the = relation,
as we observed in Section 1. It demands the existence of a
function which fixes once and for all the “state of affairs”
that might prevail at the intermediate states occurring in the
u-cube. Specifically, if each of the states in the u-cube satisfy
one among a set of properties then the function must fix a
specific property for each intermediate state in the u#-cube.
In particular note that, due to nondeterminism, for each
v< u there might be several v-successors at s and the
function must determine which belongs to the u-cube in
question.

We can use a finite set of inference rules for our
axiomatization, but then the inference rule (Step) is
replaced by an infinite set of axiom schemes [ LRT]. Let
I'={y,, ..y} andaerl"

(AStep) Cudoan N [vI(y,v - vYe)

rSu

>V </\<v> A <v’—v>f(v’)>-

Je Flul]l ‘veu revrcu
Sfluy=2a

Observe that the step axioms and rules have a consequent
that is double exponential in the size of the antecedent.

We do not know whether it is possible to axiomatize this
logic with a finite set of inference rules and a finite set of
axiom schemes. However, we can so axiomatize a logic in a
more expressive language; see Section 9.2.

Note that the axiom system in itself does not force models
to be distributed transition systems—tree models (with
action-labelled edges) could suffice, and the axioms would
then provide closure conditions on the models. However,
we are primarily interested in dts’s, which arise naturally in
concurrency theory, and we study this logic in an attempt to
characterize dts’s (in the sense of standard modal logic
[HC]).

THEOREM 2.1 (Soundness).

If -a then = a.

Proof. We will verify only the soundness of the inference
rule (Step). The soundness of the axioms and the other
inference rules is easy to check.

So suppose the disjunction of a set I" of formulas y, ..., y,
1s valid, ael" Let M =((S, —), V) be a model and se S
such that M, s = {u) a.

Hence there is an s" with « holding and a u-cube g from
s to it. We define the required function fe FTu, I'] as
follows.

Suppose vcu. M, g(v)Ey, v --- vy,. Hence some
formula in I" must be satisfied at g(v). To be specific, let f(v)
be the formula y; where j is the least index in {1, .., k} such
that M, g(v) |= y;. Finally, let f(u) = a.

The soundness of the axiom now follows easily from
s g(v) and g(v) % g(v') forevery v v' cu. |

The following theses and derived inference rules will be
required for proving completeness.

Theses.

(T1)y  [ulaa<u) f2Ku)(anpf)

(T2) Oaalpo(anp)

(T3)  [ul(aaB)=[ulanlu]l B

(T4) DO(aap)y=0an0p

(TS)  (ud(aafyoudaniuyf

(T6) <Cud(avpPr=<uraviuyp

(T7) <ClavP)=Cav Op

(T8) CO(anf)=2Candp

(T9) Oa>o[u]0a

(T10) Oa>oa.

Derived Rules.

o a>f a>f
Bl D —— It

(uG) [u]o (DR1) OYEXY. (DR2) SusOF

The derivations are quite easy (see for instance [Bur])
and hence we omit them.

The closure of a formula will play a crucial role in the
completeness proof.
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DEFINITION 2.2. Let a be a formula.

1. CL'(a) is the least set of formulas containing a which
satisfies

(a) If ~Be CL(a) then e CL'(a)

(b) IfB,vp,eCL(a)then f,, . CL'(a)
(¢) Ifdu)feCL(x)then fe CL'(x)
(d) f CfeCL'(a) then fe CL' (%)

2. CL(a), the closure of a, is given by
CL(x) ¥ CL(x) U {~f | fe CL(x)}

3. An atom generated by a is a maximal consistent
subset of CL(«).

4. AT(a) is the set of atoms generated by «.
5. Voc(a), the {closure) vocabulary of «, is given by:

Voc(a)=1{) {u | thereisa (u) fe CL(x)}.

It is easy to check that there exists a constant ¢ > 0 such
that if a is of length » then CL(«) is of size at most ¢n and
hence AT(«) is of size at most 2"

The completeness proof will consist of showing that every
consistent formula is satisfiable. For the rest of the section,
fix a consistent formula «, and an action de X — Voc(a,).
Note that d exists because Voc(a,) is finite and X is not.

For convenience, we will assume the parameter «, and
write CL, AT, and Voc. Clearly CL is nonempty and since
o, s consistent, AT is nonempty. Further, each atom is non-
empty since the empty set is not maximal (one can always
consistently add «,). For every atom w, we let »* denote
the conjunction of the formulas contained in it. For a non-
empty set W={w,, .., w,} S AT, W denotes the formula
w, v --- v, The next result can be obtained by applying
the machinery of propositional calculus [ Krd ].

ProrosiTION 2.3.

1. Ifaewthen bw>oa
2. (W Aais consistent and ae CL) iff xew.

Let w,w' e AT.

-~

3. WA w is consistent iff w=w".
~
4. AT

The set AT can be used to construct a model for «,. The
underlying dts 7S, = (AT, —) can be defined as

—~
— L (w, u, w') | WA (ud w'is consistent and u < Voc)

u{w, {d}, w) | WA OW is consistent}.

Recall that de 2 — Voc.
LemMa 24. TS, is a dts over Vocu {d}.

Proof. w2, w  iff wA{H)w' is consistent iff, by

Axiom (A4), w A w' is consistent. By Proposition 2.3(iii),
this holds if and only if w =w".

Next suppose that w —— w'. We must establish the exist-
ence of a u-cube from w to w' in TS, First note that, by the
definition of —, either u< Voc or u={d}. If u={d}, the
function is obvious, so suppose u < Voc. Then w A {ud w' is

consistent. Let AT = {w,, .., w,}. Since w' € AT and }—/]7’
by Proposition 2.3(iv), we can apply (Stgg) to get a function
fin F[u, {w,, .., wy} ] such that f(u) = w' and the following
formula is consistent:

wa N oy A V=) fIY)

rew rev sy

Using Axiom (A4) and Proposition 2.3(iii), observe
that f(¢f) must be w. Consider v<v' <u. We have
o (DY fluyalv'—v) f(v')) is consistent. By the
derived rule («G), the formula (> flv) A (' —v) f(¢')1s
consistent. Using (A4), we see that f(v) A (v —ov)> f(v') is
consistent.

Now define g € #[u, AT] by g(v) = w,such that w, = f(v).
It is easy to observe that g satisfies the conditions for a
u-cube from w to w’. |

The next intermediate result is useful in the proof of
completeness.

LEMMA 2.5. Letw,w' eAT andu< Voc v {d} such that
w——w. If Gaew then Oxew.

Proof. Suppose w—> w', w' < Voc. Then w A (u) w 1s
consistent. Applying (A2), w A O is consistent.

Alternately, if w % w’, then again W A <>v/v\' 1s consistent.

By part/\(i) of Proposition 2.3, W s O By (DR2), we
get }:\Ow’ > <O Ca, and by axiom (A2), it follows that

- Cw' > Oa. Hence w A Oa is consistent. Since Ca e w', it
is in CL and using Proposition 2.3(ii), we get Caxew. |

Now define the model M,=(TS,, V,) where for every
we AT, Vy(w)=w n P. Since a, is consistent, it must belong
to some atom w, in AT hence by the following lemma it is
satisfiable in M.

LEMMA 2.6. Ve CL:Vwe AT My, wkfiff few.

Proof. We proceed by induction on the structure of §. If
fePor fis of the form ~a or «, v a, the proof is routine.
Hence assume that f is of the form {u) a.

Suppose {u) x e w. Then w A {u) « is consistent by part
(i1) of Proposition 2.3. This implies that {u) « is consistent
and by derived rule («G), o i1s consistent. Then the set
W={w'|aew'} of atoms is nonempty and by PC,
a> W. By (DR1), we can then deduce that | (u)a>
(ud W.Thus w A (u) W is consistent. By thesis ( T6), there
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exists w’' € W such that w A (u) w’ is consistent. By defini-
tion of —, we then obtain w—> w'. Since a € w’, it must be
the case that M, w' = « by the induction hypothesis. Hence
M owkE{uda

Next suppose that M, wp (u)>a. Then there exists
w' € AT such that w > w' and M, w' = a. By th/e\induction
hypothesis, « € w'. By definition of —, w A {u> w' is consis-
tent. Thesis (T5) implies w A (u) a is consistent. Since
(uyae CL, we get (uyaew from part (ii) of Proposi-
tion 2.3.

Now consider the case where g is of the form <a. Sup-
pose Caew. Then w A Oa is consistent. Hence ¢ and a
are consistent. Define W= {w'|aew’} as above. Again,
using the derived rule (D15\2) and thesis (T7), we will get
w' e W such that WA Ow' is consistent. Consequently
w~%> w’'. Using the induction hypothesis, M, w' =« and
therefore M, w = Oa.

Finally suppose that M,wkE Ca. Then there is a
w' € Z(w) such that M, w' = a. By the induction hypothesis,
aew’, and by thesis (T10), Caew’. By repeated applica-
tion of Lemma 2.5, we now get Caew, as required. |

If Ea then |-

Proof. As observed earlier, Lemma 2.6 at once implies
that every consistent formula is satisfiable. |

THEOREM 2.7 (Completeness).

Observe that we can in fact obtain a model based on a
pointed frame by taking TS, = (%rg(wy), =, we) in the
above construction. Hence the completeness result holds for
models based on pointed transition systems as well. We can
in fact extract a more important result. By soundness of the
axiom system, if « is satisfiable then it is consistent. The
proof of the completeness theorem then guarantees that it
has a model of size at most 2%, where ¢ > 0 is a constant and
n is the length of a. Hence we have:

THeOREM 2.8 (Decidability). Satisfiability in our logic
is decidable in nondeterministic exponential time.

The standard filtration technique [FL] can also be
applied to get a direct, model-theoretic proof of decidability
[Parikh].

A remark about the upper and lower bounds. It is
easy to see that the Fischer-Ladner lower bound of deter-
ministic exponential time for PDL [FL] will also hold for
our logic. The same proof goes through except for the fact
that the [|-*] of p. 207, line 12 [FL] must be replaced
by O. As for the upper bound, PDL has been shown by
Pratt [ Pra80] to be decidable in deterministic exponen-
tial time. However, unlike PDL, our models are built
from {(hyper-)cubes corresponding to the relation —.
Such cubes can be exponential in the size of the
formula and it is not obvious that guessing them can be
avoided.

643:119/1-8

3. EVENT STRUCTURES AND NET SYSTEMS

The soundness and completeness theorems of the
previous section can be together viewed as a logical charac-
terization of the class of distributed transition systems. We
mean this in the spirit of a result such as “S4 is sound and
complete w.r.t the class of partial orders” in modal logic
[HC]. Here we wish to show that our axiomatization also
characterizes finitary event structures and elementary net
systems.

As shown in Section 1, there is a natural way of asso-
ciating a dts T'Sgs with every Z-labelled event structure.
Similarly there is a dts 7§, associated with every
Z-labelled elementary net system. It is easy to see that there
are dts’s which cannot be generated by event structures or
net systems.

For instance, let a, b, ¢ be three distinct letters in X.
Figure 7 shows a dts which can not be isomorphic (in the
obvious sense) to a dts associated with a X-labelled event
structure. The events corresponding to the {a, c}-cube are
dependent on the a and c events performed in state s, which
are in conflict. In an event structure, concurrent events
cannot be dependent on conflicting ones.

A similar claim can be made for dts’s associated with
elementary net systems.

On the other hand, let SAT, SAT ¢, and SAT s be the
set of formulas satisfiable by models based on all dts’s, on
dts’s associated with labelled event structures, and on dts’s
associated with labelled net systems, respectively. We
show in this section that SAT ;o= SAT 5= SAT. That is,
(satisfiable) formulas of our logic can be satisfied by dts’s
associated with event structures and net systems.

To prove this result, we make use of the standard notion
of bisimulation [ Park].

DermniTION 3.1, Let TS, =(S,, —,), i=1, 2, be two dts’s
over 2. Then a step bisimulation between them is a relation
R < S, x 8, such that s; R s, implies

FIG. 7. A dts which cannot be generated from an event structure.
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» If 5, %> &) then there exists s, € S, such that s, <, 5/,
and s'| R s,.

o If 5, >, &, then there exists s, € S| such that s, >, 5/
and 5’| R 5%,

PrROPOSITION 3.2. Let M,=((S;,,—,), V), i=1,2, be
two models and R a step bisimulation between {S,, —,) and
(S,. =) such that s, R s, implies V(s,) = V,(s,) for every
$(, 85. Then for every a and every (s,, 5,) € R,

M,si\Ea iff My, s,Ea

Proof. We can first show that s, R s, implies

o If s € Ars,(s,) then there exists s, € #rg,(s,) such that
sy Rs,.

o If 5, € #,5,(5,) then there exists s, € #rg,(s,) such that
st R s,

Then structural induction on a will give the result. For
instance, one can follow the proof of the p-morphism
theorem in [HC]. |

LemMMA 33. Let TS = (S, —, so) be a countable pointed
dts over 2. Then there exists a labelled event structure ES and
a step bisimulation R between TSgs={(Crg, =pg) and TS
such that 3 R s,.

Proof. Fix a countably infinite set of events £ and fix an
enumeration of g (E)x Sx g4,(Z) % S. Since £, Z and S
are countable such an enumeration exists. We will induc-
tively construct an infinite sequence ( ESy, R,), (ES,, R)), ...
such that for every i = 0,

1. ES,=(E; <,, #;,¢,) is a finite
structure whose events are members of E.

2. ECE ., ST E=<, #...[E=%#,
¢i+lrEi=¢i~

3. Ife cogs,esthenVj<iie eE;iffe,eE,.

4. R,=Cgs xS with the property JR;s,, R, is a
function, and R, = R, , [ (Cgg x S).

labelled event

and

We will abbreviate Cgg, by C;, =5, by =, etc. The tuple
(¢, s, u, s') is a requirement for (ES,, R,) ifce C;, ¢ R, 5, and
s> ¢ in TS. The requirement is /ive if there is no ¢’ € C;
such that ¢ ==, ¢’ and ¢' R, 5.

The “limit” of this sequence will be (ES, R), the event
structure and bisimulation required by the lemma.

Set ESy=(, &, @, @) so that TSo=({@}, =),
where == {(J, &, &)}. Set Ry={(,s,)}. Clearly
(ES,, R,) satisfies the inductive conditions.

Assume that (ES;, R;) have been defined for i > 0 satis-
fying the required properties.

If there are no live requirements at stage i, set (ES, |,
R, }=(ES;, R)). Otherwise pick the live requirement
(c,s,u,s'y with the least index in the enumeration of
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Pl E) X Sx $25,(Z)x S that we have fixed. Note that
u#( because s— s’ implies ¢ =®>, ¢ and ¢ R;s". Let
u={a,,a,,..,a,}. Pick Y={e, e,,..,e,} from E—E,
Since £ is countable and E; is finite, we can always find such
ay.

Define ES,, = (E,,\, <;41, #iv1,$:01) by

def

E W =EvY
<o ¥ g ulex Y)u{(e,e)|ec Y}

defl

#io= FOUE—-c)x Y)U(YX(E,~c))

def |45
$iiile) = {(ﬁ;(e),

for e=e;,, 1 <j<n
for ec E,.

First observe that the inductive conditions (1), (2) and
(3) hold. We have

co,, 1 =co;u{(ee)|e e el e#e}.

ES, is finite and 2-labelled (preserving concurrency ), but
we have to verify that it is an event structure.

<,,, 18 clearly reflexive. It is transitive because ¢ is
downward closed. Since <, was antisymmetric, <,,, Is
antisymmetric by definition.

To prove conflict inheritance, let e#,, , ¢ <,., e". Sup-
pose ¢”" € Y. Then, by definition of <, ,, either ¢’ =¢”, in
which case we are done, or €' € c. But then ¢ must be in E;
and not in ¢. Hence ¢#, | e” by definition.

Suppose that ¢” € E;. Now ¢’ must be in E,. If ¢ is also in
E., since ES, is an event structure, we have e#, ¢” and hence
e#,,,€¢". Otherwise, e is in Y. Hence ¢’ € E; — ¢, whence
e” ¢ c as well. By definition, (e, ") e #,, .

This completes the construction of ES,,;. Finally
observe that

Ci+l=CiU{Cuy lyc Y}~
Since s — ', let /' be a u-cube defined by it. Let

R, =R,L {(CU}’sf(d’Hl(J/))) | yc Y}~

By taking the componentwise union of the (ES;, R,)’s, we
obtain the required pair (ES, R). ES is finitary since each
event in it comes from some ES,, j> 0, which is finite, and
since <[ E;= <, for i >, the “past” of each event is finite.
We use inductive condition (3) to establish that R is a step
bisimulation.

In one direction, suppose ¢ R s and ¢ 2> ¢’. Then there
is a set of concurrent events y such that ¢'=cuy and
¢(y)=u. By (3), there is a minimum ;>0 such that
YyEE;, \—E,. Let (c,s,v,5) be the requirement chosen at
ES; to obtain ES;, , and f: p(v) — S be the chosen v-cube.
By definition of C,,,, it must be the case that Jv,:
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PoUUSUUC =cUly, ¢"=cuvyuu Then ¢ R f(vy),
" R f(vguu)and f(vy) == flvouu)in TS,

For the other direction, suppose s, —— s, and ¢ Rs,.
Since (c, s,, u, 5,) is a fulfilled requirement, there exists a ol

such that ¢’ Rs, and ¢ =>;5¢". |
THEOREM 34. SAT =SAT ;.

Proof. One direction is trivial. For the other, suppose
that e SAT. Then there is a countable (in fact, finite)
pointed model M =(TS, V), TS=(S, —,s,) such that
M, s, = o. By the previous lemma, there is an event struc-
ture ES with a step bisimulation R< Cgzgx S such that
@ R s,. The proof of the lemma also establishes that Ris a
function, hence we can define Vg(c)= V(s), where ¢ R s.
Let Mzs=(TSgs, Vies). By Proposition 3.2, My, & a
Hence xe SAT 5. |

Thus we have that satisfiability over the class of dts’s
generated by event structures is also decidable in nondeter-
ministic exponential time and the axiom system of Section 2
is sound and complete for this class.

We can similarly characterize the state space of elemen-
tary net systems. The crucial step is again provided by
establishing a step bisimulation. In this case, we can use the
work of [NPW ] and provide a bijection.

LemMma 35. Let ES=(E, <, #, ¢) be a labelled event
structure. Then there exist a labelled net system A" = (B, E,
F, ¢, ¢) and a bijection h: TS g — TS . such that for every
configuration x € Cgg,

iff h(x) <>, h(x").

] ’
X =>ES X

Proof. Set B=B,;uB_uB,, where
e By={le} |ecE}
={(el,e2)lel<ez,el¢ez}
{{e.e'} | e#e'}.
Next set F=F4uF_UF,, where
o Fu={({e},e) | {e} € Bia}
b F<={(ela(ehez)),((elsez)»ez)|(€1,€2)EB<}
o« Fy={({e,e'},e), ({e,e'}, ') | {e e} eB,}.

Finally set ¢,, = B4 u B .
Then 4" = (B, E, F, ¢,,, ¢} is a labelled net system. To see
this, we need to verify that

. B.
. B,

CLAIM. ¢, Indye, iff e  cogses.

We leave the verification of this claim to the reader, as
well as that of the fact that 4: Cgg— C -, defined by

h(x) € (cUx) =X,

is the required bijection. ||
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THEOREM 3.6. SAT =SAT .

Proof. One direction is trivial. For the other, by
Theorem 3.4, SAT < SAT ;. The bijection h defines a step
bisimulation. By defining a valuation function and using
Proposition 3.2, SAT gs S SAT vs. 1

4. DETERMINISTIC DISTRIBUTED TRANSITION SYSTEMS

In this section we begin the study of deterministic dts’s
from the vantage point of our logic. We begin by intro-
ducing terminology that will be used throughout the rest of
the paper. As before, by a dts we will mean a dts over X
where X' is a countably infinite set of actions.

DeFNITION 4.1, Let TS=(S, X, —) be a dts.

1. TS5 is said to be deterministic if
VS, 81,8, €S, Vue p(2): s s and s s, implies s, = 5,.

2. The model M = (TS, V) is said to be deterministic if
TS is.

3. « is said to be deterministically satisfiable if there
exists a deterministic model M = ({S, —), V) and s € S such
that M, s = a.

4. o is said to be deterministically valid if M, s = x for
every deterministic model M = ((S, —), V) and every s€ S.
We write = p., ® to denote that « is deterministically valid.

5. DSAT and DVAL denote the set of deterministically
satisfiable and deterministically valid formulas respectively.

Deterministic dts’s arise naturally in a number of ways.
Let ES=(FE, <, #) be a finitary event structure. Then
(Crg, —gs) is a deterministic dts over E. Similarly, if 4" =
(B, E, F, c;,) is an elementary net system then (C ,., = ) is
a deterministic dts over E. For Z-labelled event structures
and net systems one can place well-motivated restrictions
on the labelling functions to ensure that the associated dts’s
over 2 are deterministic. We will not go into detail here.

It turns out that, from a logical point of view, deter-
minacy adds a great deal of expressive power. One of our
aims is to bring this out in a number of ways in this and
subsequent sections.

First, we consider the simple-looking formula
O {x, y} > True. Any deterministic model of this formula
must contain the grid N x N shown in Fig. 8. (A formal
proof is provided in the next section.) We have omitted the
set arrows ~22 in the picture.

Second, we can point out that for the class of deter-
ministic models, there is no hope of getting “equivalent”
deterministic models based on event structures or net
systems (in the sense of the translation theorems of
the previous section). To see this, observe that the
formula {{a, b} > True A {{b, c}> True n[{a, c}] False
[b]1<{a,c}> True is in DSAT because we can find a



O{{z,y})True

FIG. 8. NxN.

deterministic model for it, based on the dts shown in Fig. 7.
However, we know that the dts cannot be generated by an
event structure. The bisimulation technique of Section 3 is
not of use because we are restricted to deterministic systems.
Hence the class of deterministic dts models strictly includes
those based on finitary prime event structures. Once again,
a similar claim can be made for deterministic models based
on elementary net systems.

Another piece of evidence supporting the view that deter-
minacy is very expressive is provided by the axiomatization
of DVAL which we present now.

Axiom System D.

Axiom Schemes.

(A0) All the substitutional instances of the tautologies
of PC

(Al) Qe f)o(Oa>0Op)

(A2) OaoJu]aa OO«

(A3) [ul(@=p)=>([u]a>[u]B)

(Ad) a={(J)a

(AS) <(upas{(vy{u—v)>a forvcu

(A6) <uda>fu]a

Inference Rules.

x,a>f (TG) o

(MP) =2

The characteristic axiom of this system is the determinacy
axiom (A6). In its presence the rule (Step) of Section 2 can
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be replaced by the much simpler (A5) of the present system.
It can be shown that (Step) is a derived inference rule in the
axiom system,

We let |-, a denote the fact that « is a thesis of the system
D. In this section we will, for convenience, write |-« to
mean |-« and say « is consistent to mean that it is consis-
tent w.r.t. the system D. From the definitions, we easily
have:

THEOREM 4.2 (Soundness). If pa then =g, .

The completeness argument will be much more involved
than the one presented in Section 2. A simple reason is that
the “filtration” technique used in the earlier proof will
produce, in general, nondeterministic models. A deeper
reason is that, as we will prove in the next section, DVAL is
not a recursive set.

We will use the following theses and derived rules:

Theses.

(T1) [u]aalu) Bolur(anpf)

(T2) Oaa B Of(anpf)

(T3) [ulanBy=[ulanlul B

(T4) O(aap)=0anDp

(T5) Oa>oa

(T6) Da>[u] Ua

(T7) <u) True > <{v) True, forv<u

(T8) <(udoao[v] u—v)a forvcu

(T9) <u) Truen[u]ao[v][u—rv]a, forveu

Derived Rules.

a>f

od

[u] a (DR2)

a>f
Cup a>{uy B

The derivations are straightforward and we once again
omit the details.

A number of new notions will be needed for the complete-
ness proof. The dts (S, X, —) is said to be:

o sequential iff Vs, s'€S:Vue pg(2) s—*> s implies
lu) < 1.

» finite iff both S and — are finite sets.

o acycliciff Vs, s’ € S: se #(s’) and s’ € A(s) implies s = 5.
If a pointed dts TS = (S, —, 5,4} is acyclic then s, is said to
be the root of TS.

Now assume that 7.5 is acyclic and has root s,. Then we
can define the function depth5: S — N as follows:

depthrs(sy) =0
depth s(s) = max{depth 4(s') | (s',a,s)e =} + L.
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We will omit the subscript and refer to the depth function
when the dts on which it is defined is understood. We say
that a rooted acyclic dts is graded if depth(s') =1 + depth(s)
for every (s, a,s’) in the transition relation. Informally,
every path from the root to a state s must be of equal length
in a graded dts.

Next we need the notion of a thin u-cube. Let 7S =
(S,2,—)beadts and s, s’ € S. Then a thin u-cube (from s
to s') is a function fe # [u, §] which satisfies

e flZ)=sand flu)=5'
e Yoo urVaeu: f(v—{a})- flvu{a}).

Note that the existence of a u-cube implies that of a thin
u-cube. The converse, in general, is not true.

By an MCS, we mean a maximal consistent subset of the
set of all formulas of Step-TL (that is, a consistent set which
is not properly included in any consistent set). Of course,
consistency is now relative to the axiom system D.

DEerFINITION 4.3. A chronicle structure is a pair CH =
(TS, T) where TS = (S, — ) is a deterministic sequential dts
and T is a map (called the chronicle) which assigns an MCS
toeach sin S.

1. Let a, be a formula. 7 is said to be ay-coherent in CH
iff vs, s' € S:

(a) If aeVoc(ny), s—=— s and [a]aeT(s) then
xe T(s").
(b)y Ifs'e#(s)and Oae T(s) then ae T(s').

2. A live successor requirement for 2y in CH is a pair
(s, {a) True), where se S, ae Voc(a,), {a)y True e T(s)and
there is no s € S such that s < s".

3. A live future requirement for ay, in CH is a pair
(s, Oa), where seS, CaeT(s)nCL(a,) and for all
s'e R(s), a¢ T(s').

4. Let a, be a formula. CH 1is said to be ag-perfect iff T
18 ay-coherent in CH and the following conditions hold:

(a) There exists s, € S such that ay e 7(s,).
(b)

in CH.
(c) There are no live future requirements for a,

in CH.

There are no live successor requirements for

As before, we omit the parameter a, when it is clear from
the context. The following observation about a,-coherent
chronicles will prove useful later.

PrROPOSITION 4.4. Let T be ag-coherent in the chronicle
structure CH=(TS, T) where TS =(S, —). Let se¢ S and
u< Voc such that {u) True e T(s) and there exists a thin
u-cube from s to s’ for some s’ in S. Then {a | [u] xe T(s)} €
T(s").
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Proof. The proof proceeds by induction on size of u.

Base. {u|=0. Then u=(J and hence s=s' and the
result follows by axiom (A4).

Step. |u|=k>0. Letacu and [u] x € T(s). By defini-
tion of thin cubes, f(1 — {a}) —*> f(u) and there exists a thin
(u— {a})-cube between s and f(u — {a} ). It suffices to prove
that [a] a e T(f(u— {a})) as the result would then follow
by «,-coherence of T. Now {u) True € T(s) and hence by
thesis (T7), Cu— {a} > True € T{(s) as well. Then thesis (T9)
gives [u— {a}][a] a e T(s). By induction hypothesis, we
get [a] ae T(f(u—{a})), as required. |

Now we show that a model can be “pulled out” from an
ag-perfect chronicle structure. This technique is due to
Burgess [ Bur].

LEMMA 4.5. Suppose ay is a consistent formula and
CH= (TS, T) is ag-perfect. Then ayc DSAT.

Proof. Let TS =(S, —). Define TS' = (S, =) by

def

== =) {(s,u,5) | uc Voc, {u) True e T(s)
and there is a thin u-cube from s to 5" in 7'S}.
Cram. TS’ isadits.

Whenever s = s, we need to show that there is a u-cube
between s and s'. If s —> s’ then |u| <1 and there exists a
thin w-cube from s to s’ in T'S. Since |u{ <1 and - < =,
there is a u-cube from s to s’ in 7'S” as well.

Otherwise {u) True e T(s), u < Voc, and there is a thin
u-cube f between s and s’ in TS. Then for every v, S v, Su,
there is a thin »,-cube between s and f{v,) and a thin
(v, —v,)-cube between f(v,) and f(v,). Since {u) Truee
T(s), by thesis (T8) [v,]{v,—v,> True € T(s) and hence by
Proposition 4.4, {v,—v,) True € T{ f(v,)). Thus, by defini-
tion of =, f(v,) === f(v,). Clearly fis a u-cube between s
and s'.

CLam. TS’ is a deterministic dts.

Suppose s #=+ 5, and s = s,. If || < 1, the result follows
by determinacy of TS. Otherwise let / be a thin u-cube
between s and s, and g a thin u-cube between s and s,. We
show by induction on v that f(v) = g(v). The base case is tri-
vial. For the induction step, let s' = f(v — {a} ) = g(v — {a}),
acu. We have s’ 5 f(v) and s’ - g(v). By determinacy of
TS, we have f(v) = g(v) as required.

Thus TS’ is a frame. Define the model M = (TS’, V) by
V(s)=%"T(s)n P~ CL. Then M is a model based on a
deterministic dts.

Since CH is a,-perfect, there exists sy € S such that x5 e
T(sq). The following claim proves that M, s, = «, and hence
that ay e DSAT.
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CLamM. VyeCL:VseS:yeT(s)iff M,sEy.
The proof is by induction on the structure of y.

Base. When y € P, the result follows by definition of V.

Step. The cases where y is of the form ~¢d or §, v J, are
routine.

Case y={uya. Suppose {uyaeT(s). As o> True,
by rule (DR2), {u> Truee T(s). Further by axiom (A6},
[u] a e T(s). Since CH is a,-perfect, there exists s’ € S such
that there is a thin u-cube from s to s'. By Proposition 4.4,
a € 7T(s"). By the induction hypothesis, M, s’ = «. Further,
by definition of =, s = s'. Thus M, s = {u) a.

Suppose M, s = (u) o Let s' € S such that s = s’ and M,
s = a. By the induction hypothesis, ae T(s'). If {udae
T(s), we are done. Otherwise, [u] ~ae T(s). If [u] <1, we
get ~aeT(s’) by agcoherence of 7, since u< Voc.
Otherwise {(u) Truee T(s) and there i1s a thin u-cube
between s and s'. Again by Proposition 44, we get
~wa e T(s'), contradicting consistency of 7{s').

Case y= <a. Suppose Cae T(s). As CH is ay-perfect,
there exists s’ € #,5.(s) such that « € T(s"). By the induction
hypothesis, M, s' = a and hence M, s = Ca.

Suppose M, s = Ca. Let §' € #7s (5) such that M, ' E a.
By the induction hypothesis, a € T(s'). If Ca e T(s), we are
done. Otherwise, 0 ~a € T(s). Since &r5(s)= Ars (s), by
ay-coherence of T, we get ~ae 7(s'), contradicting the
consistency of 7(s'). |

Thus, given a consistent formula a,, we need to construct
an ay-perfect chronicle structure. The following results will
prove to be useful in the construction.

PROPOSITION 4.6. Let A be an MCS such that Oae A.
Then there exists an MCS B such that { | Of e A} = Band
aeB.

Proof. Let ={f|0OpfeAd} v {a}.
Consider a finite subset of I, say I'"={f,, .., fr. «}.
Then {Of,, .., OB, Ca} =4 and A is an MCS, hence

Op, A - A0f,AOaed. By thesis (T3), we get
OB, A - AB)Aaed. By thesis (T4), the formula
O(fy A - AP Aa)isin 4 and is consistent. By rule (TG),
BiA - A B Aais consistent, that is, I is consistent. Since

any arbitrary finite subset of /" is consistent, so is /. Let &
be any MCS such that I"< B. B is the required MCS. |

PrROPOSITION 4.7. Let A be an MCS such that {a) a€ A,
for some acZ. Then there exists an MCS B such that
{f|[a]lPeA}=BandaeB.

Proof. Similar to that of the above proposition. ||

LEMMA 4.8. Let a, be a consistent formula. Then there
exists an ay-perfect chronicle structure.

LODAYA ET AL.

Proof. Fix $={5,,5,,..} a countable set.

We define a sequence of chronicle structures CH, =
(TS, Ty), k=0, where TS, =(S,, —,), such that the
following conditions hold:

(A) TS, is a ﬁniE, pointed, acyclic, graded deter-
ministic dts with root s,,

(B)

(€)

T, is an ag-coherent chronicle in CH,,
> = _’k+1|—Sk and Tk= Tk+lrSk'

We will use depth, to denote the function depth,g,.
Further, for all k, we define =, = (S, x Voc) x (S, x Voc) as
follows:

(s,a)=,(s", b) iff

s a#b,
o depth,(s)=depth,(s'),

» there exists 5" €S, such that {{a,b}) Truee T,(s"),
s" 25, sand 5" <, §', and

e (5,<{ay True) and (s, {b) True) are live successor
requirements in CH .

Define =, to be (=;)*. = is irreflexive and symmetric.
=, is the equivalence relation we will use. The idea is that
when we satisfy any successor requirement, in order to
ensure determinacy, we satisfy all equivalent successor
requirements.

The construction proceeds by induction on k. For the
base case, set 7S,=(S,, —,), where S,=% {5} and
—o=""{(50, &, 5)}. Since a, is consistent there exists an
MCS A such that a e 4. Set Ty(s,) =" 4. It can be easily
checked that CH,=(TS,,T,) is a chronicle structure
satisfying the conditions (A), (B), and (C).

Inductively let CH,=(TS,, T,) be given satisfying the
inductive conditions. If CH, has no live requirements, set
CH,,,=%"CH,. Otherwise pick a depth,-minimal live
requirement (5, y). That is, for every live requirement (s, )
in CH,, depth,(5) < depth,(s').

Case y=<oa. We have a future requirement (5, Oa).
Since <aeT(5), there exists an MCS B such that
{p| OfeT(5)} u{a} =B, thanks to Proposition 4.6.
Since TS, is finite, S, = $. Pick §e $ — S,. Define S, , , =9
S,u{§}. Further —, is finite, hence Z,=%Vocu
{a|3s,, s,€8;: s, s,} is finite. Thus I, = X. Pick
de X —Z,. Define

e E o 0 {(5 {d), 8, (5, B, §).

Extend T, to T, , by setting T, . ((§)=B. Now TS, ., =
(Sk+1s 2ks1) and CHy = (TSi ;. Tyiy) It 1s easy to
check that CH,,, is a chronicle structure satisfying
conditions (A), (B), and (C).
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Case y=<{a) True. We have a successor requirement
(5, <a) True) which is depth,-minimal. Since {d) Truee
T.(35), by Proposition 4.7, there exists an MCS B such that
{f|[d] Be A} = B. Again since TS, is finite, we can pick
§eS—S,andlet S, ., =S, U {§}. Define

e E o U D5 U {(s,b,8) | (s, )= (5, a)}.

Extend T, to T, , , by letting T, ,(§)=B. Now TS, , =
(Seors—xs)and CH,  =(TS,,,, T, ). We now show
that CH, ,, is a chronicle structure satisfying conditions
(A), (B), and (C).

Clearly 7S, ,, is a finite, sequential dts. Further the
restriction of —,,, and T, ., to S yields —, and T, as
required. Note that Z5, ,(§) ={$}. Since S, , , — S5, = {$§},
we thus see that 7S, ., is acyclic. Since §e %TSM(ES),
TS, ., is pointed with root 5o. Determinacy of TS, ,,
follows from the observation that s-2s, ., § only when
(s, {b> True) is a live successor requirement in CH.

To show that TS, , , is graded, let s -2»,, , s'. If s and &’
are both in S, we are done, since TS, is graded. By the
earlier observation, we know that s#3§ Thus let se S,
and 5'=3§ We have s, ,§ and need to show that
depth, . (5)=1+depth, , (s)=1+depth,(s). Now, by
definition of the depth function, depth,  (§)=1+
depth, , \(s). So suppose depth; , (§) > 1+ depth,(s). Then
there exists s'€ S, ,, and ae X such that s' %, | § and
depth, . (§) =1 +depth, . (s'). By construction, we must
have s'e€S, and (s,a)=,(5, a)=,(s,b) and hence
depth,(s') = depth,(s) giving a contradiction.

We have shown that CH, ,, indeed satisfies conditions
(A) and (C). To show a,-coherence of T, ,,, consider
be Voc such that s 25, , s’ and [b] a€ Ty, ,(s). We need
to show that xe 7, ((s').

It suffices to consider the case when s€ S, and s' =§ We
have (s, b)=,(5,4d). Let 5,,5,,..,5, €S, and a,,ay, ..,
a;_, € Voc such that

(5,8)= (8¢, o) =p ($1,ay) =p--- = (8,1, a;_4)

=, (s;,a;) = (s, b).

We show by induction on i that {f|[a,] fe Ti(s))} =
T, ., (§)=B. The base case, when i=0, comes about by
choice of B. Let i > 0 and suppose that [a,] fe T.(s,). Let
s"€ S, such that ({a;_,,a;}) Truee T(s") and s" >,
Si_y. 8" 255, s, The existence of such an s” is guaranteed
by the third condition in the definition of =,. By a,-
coherence of Ty, <{a,_D[a;] B T(s"). By thesis (T8),
[{a,_,a;}1BeTi(s"). Since {{a;,_,,a;}) Truee T (s"),
by thesis (T9), [a,][a;,_;] e Ti(s"). By ag-coherence of
T., [a;,_,]1B8¢€Ty(s,_,) By the induction hypothesis on i,
f € B, as required.
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Further, if Cae T,(s), by thesis (T6), [b] Oae T,(s).
We have just shown that in that case, (o € B and by thesis
(T5), «ae B as well. Thus 7T, ,, is ay-coherent and the
inductive construction of CH, _ | is complete.

Define CH =% (TS, T), where TS =% (S, —), by

def def
S: U Sk’ — = U —)k,
k=0 k=0

and T(s) =T(s), forseS,.

T is well defined since T, = T, , ;[ S,, for all k. Note that a
“fresh” action d outside Voc is used to satisfy all future
requirements and that once a successor requirement
(s, <a) True) is satisfied, no further a transitions can be
added. Hence TS is a deterministic dts. It is easy to verify
that T is a4-coherent.

Towards showing that CH is o,-perfect, observe the
following:

CLamM 1. Letuc< Voc. If s, 5., 5, € S such that there are
thin u-cubes f and g respectively from s to s, and s to s,, then

for every v S u, f(v)=g(v).
The proof is by induction on u, using determinacy of 7'S.

CrLamm 2. ForeveryseSandae Voc, if (a) True € T(s)
then there is an s' € S such that s > s’

Let k =min{j|seS,}. Note that for every s'e $— S,
depth r5(s') = depthr4(s). Since TS, is finite, let m = |{s" € S, |
s'#s, depth,(s') < depth(s)}|. Either (s, {a) True) is not a
live successor requirement in CH, , ,, (in which case we are
done) or it is a depth, , ,,-minimal successor requirement in
TS, .- Let there be n such minimal requirements in
CH, , ,,. Surely none of them can be live in CH, _ ,,, , and
we are done.

CLaM 3. Let se S, us Voc and {uy True € T(s). Then
there exists s' € S such that there is a thin u-cube from s to s'.

The proof is by induction on |u]. The base case, when
u= (7, is trivial. For the induction step, let u = {a,, .., a,}.
By the induction hypothesis we can assume, for every
ie{l,..,n}, an s,€S, with a thin («—{a,})-cube f;
from s to s,. Since {u) Truee T(s), by thesis (T8), for
every i, [u—{a;} J{a;) True e T(s). By a,-coherence of T
and the fact that (u) —{a,} Truee T(s) (using T7),
Proposition 4.4 assures us that {a,) Truee T(s,). By the
previous claim, for every i, there exists s’ such that
5~ 5.

Let & be one less than the least j such that one of the
s;eS,. Clearly, for all i, (s;, {a,> True) is a live successor
requirement in CH,.. Now consider two thin cubes, f; a thin
(u—{a,})-cube to s;and f; a thin (1 — {a,} )-cube to s;, i # .
Let v=u—{a; a;}. By Claim1, f,(v)=f(v)=5" (say).
Now f; defines a thin v-cube from s to s". Further since
(u) Truee T(s), by thesis (T8), [v]<{{a,, a;})> Truee
T(s) and by o,-coherence of 7 and Proposition 4.4,
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({a;,a;}> Truee T(s"). Further, s" 4 s, and 5" 5 s,
Hence (s,, a,) =, (s,, a,). Since we know that s;€ §; , | — S,
the chosen live successor requirement at stage k& must be
equivalent to (s;, a,) and hence (s, a;). By construction, for

Jr ¥
every i, s,—,,, §=45,. We now define the thin u-cube f
from s to § by

f(v) def {fi(U),

$, v=1u.

vcu—{a;}, a,eu

It can be easily shown that CH is a,-perfect. |

THEOREM 4.9 (Completeness). If k= pe « then |-p a.

5. UNDECIDABILITY

In this section and the subsequent sections, our emphasis
will be on negative results. Specifically, we shall show that
the satisfiability problem for our logic becomes undecidable
when some natural restrictions are placed on the class of
permissible models.

We first consider deterministic distributed transition
systems over a countably infinite alphabet 2. We begin by
showing that deterministic satisfiability is undecidable, or in
other words, that the set DSAT is not recursive.

Various versions of the colouring problem [ Parikh] will
be used to establish our negative results. Colouring
problems correspond to tling problems (see [ Har85]) and
in this section the colouring problem that we consider
(called simply CP) corresponds to the so-called origin
constrained tiling problem in [ Har85].

An instance of CP is a triple 4

=(C, R, U), where

C={cq, €y, ¢} is a finite non-empty set of colours
and R, U: C— (p(C)— &) are the “right” and “up” func-
tions.

A solution to A4 is a colouring function Col: NxN - C
which satisfies:
1. Col(0,0)=c,.

2. Y(i,j) e Nx N, Coli + 1,j)e R(Col(i,}))
Col(i,j + 1) € U(Col(i, j)).

and

It follows easily from [Har85], as shown in [Parikh],
that CP is X%-complete and hence undecidable.

We now reduce each instance of CP to a membership
problem for DSAT. In other words, we uniformly encode
each instance 4 of CP into a formula «, such that 4 has a
solution iff a, € DSAT. In order to capture the effects of
functions R and U, we reserve two actions, x and y, respec-
tively, in 2. We reserve k + 1 atomic propositions in P to
denote the colours in C={c¢,, ¢y, ..., ¢x}. For notational
convenience, these atomic propositions will also be written

AS Cgy Cpy ey Cpe
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DerINITION 5.1. Let 4=(C, R, U) be an instance of
CP, where C is a nonempty finite set {c, .., ¢;}. Then
a, =" A3 a;, where

def
¢ X = Co.

., d=e(D<{x v} > True.

* :e ‘ < /\”Q')'

oA (o=
o\
#o )

L )
Iln

)

ce Rie)

o0 . )

The intended meaning of the conjuncts of a, should be
clear. The important formula is «, which, in the presence of
determinacy, encodes the “grid” N x N (as we saw in Fig. 8).

LEMMA 52, Let A=(C, R, U) be an instance of CP. If A
has a solution, then a y € DSAT.

Proof. Let Col: NxN — C be a solution to CP. Now
define 7'S = (S, —) as follows:

IIn

SENxN.
- (), {x}, G+ 1,)) | (i, j)e N x N}
{5 1), {»y}, Gj+ 1) | (i, j))e N x N}
O{(( D {x yY G+ 1+ 1) | (L) eNx N}
V{1, D, (1)) | (1, /) e Nx N}.

Then it is clear that TS is a deterministic dts over Z.
Next define V:S— @(P) as V(i j)={Col(i,j)}. Let
M = (TS, V). Then it is straightforward to show that A,
(0,0) oy |

The converse of this lemma is more difficult to prove. We
first prove an intermediate result.

LEMMA 53. Let M=(TS, V) be a model where
TS = (S, —) is a deterministic dts over X. Let s € S such that
M, sk ({x,y})> True and let s'eS. Then the following
Statements are equivalent:

1 stz

s g

2. I, eSisS s, s

3. 35,855 5,55

Proof. From the definition of a dts, it follows that (1)
implies (2) and (3). So now suppose that (2) holds. Since
M, sk <{x, y}> True, there exists s"€S such that
s4=2 o Hence, for some s, € S, we have s -5 5, > 5.
But 7S is deterministic, hence s, =s,. But then s, —> s’
and s - s" and again by determinacy of TS, we get
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s' =s". Therefore (1) holds. Similarly we can show that (3)
implies (1). |

LEMMA 54. Let A= (C, R, U) be an instance of CP such
that o ;€ DSAT. Then A has a solution.

Proof. Let M,s,=oa,, where M=(TS, V),
(S, —) is a deterministic dts over X, and s, € S.

Towards constructing a colouring function for 4, we
adapt the following strategy: we first compute the colours
on the diagonal in N x N and then inductively fill out larger
and larger squares. For each point on the grid, we associate
a state in #(so); this is sufficient since the formula
o4 A oy A s 1s satisfied at that state and hence the colouring
function can be easily “pulled out.”

The diagonal function Diag: N — Z(s,)
inductively:

o Diag(0)="4"s,.
o Diag(m+ 1) =5, provided Diag(m) teyl,

TS =

is defined

Since M, so k= a,, for every se #(s,), s has an {x, y}-
successor and hence Diag is total. Determinacy of TS
ensures that Diag is well-defined. We have Diag( i){x—""}—»
Diag(i+ 1), for all i, directly from the definition.

In what follows, let i, j, m and n range over N. We now
construct a sequence of function pairs {(¥,,, Col,)} >0
with ¥, {0, .., m} x {0, .., m} - S and Col,,: {0, .., m} x
{0,..,m} > C such that the following conditions are
satisfied at every stage m, m = 0:

(Cly Col (0,0)=c¢,

(C2) ¥, (i,j)=> ¥, (i+1,)) [0<i<m 0<j<m]
(C3) ¥.(i,j)> ¥, (ij+]1) [0<i<m 0<j<m]
(C4) ¥,(i,i)= Diag(i) [0<i<m]

(C5) Col(i+1,j)eR(Col,(i,j)) [0<i<m, 0<j<m]
(C6) Col,(i,j+1)e U(Col,(i,j)) [0<i<m, 0<j<m]

Set ¥y(0, 0) =% 5, and Coly(0, 0) = ¢,. Clearly condi-
tions C1 and C4 are satisfied and the rest of the conditions
are satisfied vacuously.

Assume that inductively we are given ¥, Col,,. ¥,, .1,
Col,, , , are now defined, in five steps:

Step 1. Set

¥, ) E W0 )) and

Col,, , (i, ))& Col (i,j) [0<i<m, 0<j<m].

[0<i<m, 0<j<m]

This ensures that ¥, , restricted to {0, ..., m} x {0, ..., m}
i1s ¥, and a similar statement holds for Co/,,. Further, this
guarantees that Col,, , , satisfies condition Cl1.

643°119:1-9
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Step 2. Set ¥,, . (m+1,m+1)="" Diag(m + 1). This

ensures C4 for ¥, ., and that ¥, (m m)-—5
¥ im+1, m+1)
Step 3. Wenowdefine ¥, , (m+1,/),for0<j<m,by

induction on m —j. For the base case, we have j=m. We
have ¥, (mm)2h @ (m+1,m+1) by Step2
Hence there exists s,€ #(s,) such that ¥, . (m, m)—->
s, ¥, (m+1,m+1). By determinacy of TS, s, is
unique. Define ¥,,, ,(m+1,m)=%s . Since ¥,, satisfies
C2, by Step 1, we have ¥,,, (m,m—1) = ¥, o 1(m, m).
Now, by LemmaS5.3, we get Ax,
Vo oalm+ 1, m)

For the inductive step, we have j<m. By induc-
tion hypothesis, we can assume ¥, . ,(m,}) REEIN
¥, 1lm+1,j+1). By similar reasoning as above, we
determine ¥, (m + 1, ). Thus, the (m + 1)th row is com-

pletely defined, and ¥,,, , satisfies condition C2.

¥Y,imom—1)

Step 4. The definition of ¥, . (i,m+1), for [0<
i £ m] proceeds in the same manner as in Step 3, except that
we now appeal to the fact that ¥, satisfies C3 and induc-
tively ensure that S”,,,H(i,m)@» ¥ i+ 1, m+1).
Thus, the (m+1)th column is completely defined, and
¥ ... satisfies condition C3.

Step 5. Wenow define Col,, (i, ), fori>morj>mto
be simply the colour ¢, where ce M(¥,,, (i,j)). Since
¥,e1li, j) € H(sy), a3, a4 and a5 ensure that Col,,, (i, j) is
well defined for these values and that Col,, ,, satisfies
conditions C5 and C6.

This completes the inductive construction of ¥, , and
Col,, ;. Finally define Col: NxN — C by Col(i, j) =4
Col, (i, ), where m = max{J, j}. It is easy to verify that Co/
is a solution to 4. ]

THEOREM 5.5. Deterministic satisfiability is undecidable.

Proof. By the earlier Lemma 52 and Lemma 54,
any instance 4 of CP has a solution iff the formula
a4 € DSAT. Since CP is undecidable, so is membership in
DSAT. |

Actually, the proof of Lemma 54 is more elaborate
than necessary. We have chosen this method to emphasize
that it is not determinacy as such, but a weaker property
implied by determinacy which yields undecidability. This
property is specified in Lemma 5.3 and it can arise in a
natural way even in the absence of determinacy. In par-
ticular, the partial commutativity of actions, as it occurs
in the theory of trace languages, gives rise to the same
phenomenon. The reader can verify that the undeci-
dability proof goes through for a (possibly nondeter-
ministic) dts 7S =(S, 2, ») which satisfies, for some
a,bel,

. b
for every sq, 51, 5, € S, if 5o~ 5, 2> 5, then 5o 222 s,
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Such transition systems occur in the theory of trace
languages [ Maz] and we shall show in Section 8 how the
satisfiability problem for an appropriate logical language is
undecidable.

6. DTS’S OVER FINITE ALPHABETS

So far we have considered dts’s over X, where 2 is a
countably infinite alphabet set. We now turn to a natural
variant, namely the class of dts’s over finite alphabets.

Due to the mixture of temporal and step operators in our
logical language Step-TL, there is a significant difference
between the finite and infinite alphabet cases. This is so
because formulas of the form <a can be more easily
satisfied when the alphabet is infinite. {The same observa-
tion holds for any action-indexed temporal logic.)

We first introduce some useful terminology for the finite
case. For convenience, we consider only finite nonempty
subsets of X as our finite alphabets.

Let 4 be a finite nonempty subset of 2. A dts over 4 is a
dts (TS =(S, —) such that - €S x p(A4)xS. An A-frame
is a dts over 4. An A-model is a model M = (TS, V), where
TS is an A-frame. {a | Voc(a) = A} is the set of A-formulas.
The A-formula « is A-satisfiable iff there exists an 4-model
M =((S, —), V)and s € S such that M, s &= «. The notion of
A-validity (restricted to A-formulas) is defined in the
obvious way. We write = ,x to denote that the formula o
is A-valid.

Now the formula f=%"pA O ~pAA,.,[a] False is
obviously not A-satisfiable, but is certainly (Z-)satisfiable.
This is the essence of the difference between the finite and
infinite alphabet cases. The relationship between the two
notions of satisfiability can be brought out as a corollary of
the completeness theorem (Theorem 2.7} in Section 2:

COROLLARY 6.1. « is satisfiable iff « is A-satisfiable for
some A e g (X)) with Voc(a) € 4 and |A| < |Voc(a)| + 1.

Proof. Suppose a is satisfiable. Then by the soundness
theorem for ND, « is ND-consistent. By the proof of
Theorem 2.7, a is A-satisfiable for some A€ g;,(2) with
Voc(a) = A and |A| < |Voc(a)| + 1.

The second half of the result is immediate because every
dts over A4 is also a dts over 2. |}

For the rest of this section, we fix A, a finite nonempty
subset of X. Our first aim is to consider the set of 4-valid
formulas. Let NDY denote the axiom system ND (presented
in Section 2) instantiated over A-formulas. It is easy to see
that NDY, is sound over the class of A-models, but it cannot
be complete. This is because the formula £ defined above is
NDY-consistent (by soundness of ND, since f is satisfiable),
but not A-satisfiable. For completeness, we need in addition
the following induction scheme:

(Alndn) O <cx: /\ [a] a):(a: Oa).

ae A
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Let ND, stand for the system NDY augmented with
(Alndn). The following theorem can be easily proved:

THEOREM 6.2 (Soundness). If o is a thesis derivable

Jrom ND , then o is valid over the class of A-models.

The completeness proof proceeds along the lines of the
proof of Theorem 2.7. We assume the notation and ter-
minology of that proof for the discussion below. Let «, be an
ND ,-consistent formula. We first define TS, = (AT, — ) by

~
w—5 w iff w A {u) w'is consistent, u < 4.

It can be easily checked, as in the proof of Lemma 2.4, that
TS, is a dts. Clearly, TS, is an A-dts.

The rest of the proof proceeds exactly as before, the
only difference being that M,, w = Ca when Caew. To
establish this, we need an intermediate result:

LEmMMA 6.3. Let we AT and R= R s (w). Then —Ro
/\ueA [a] R

Proof. Assume w and R as above. If R = AT, then from

I AT (Proposition 2.3(iv)) and TG, we get A,., [a] R,
and hence, by PC, the formula above.

Otherwise let R={x,,..,x,} and let AT—-R=
{»1, . yi}. Suppose the formula is not a thesis. Then

RAV,.4<a)~R is consistent. By Proposition 2.3(iv),

- AT and hence we can show that - ~R>3, v - v y,.
Thus, (X, Vv -+ VX) A Vaealad(31Vv - v¥,) is consis-
tent. Hence, for some /e {I, .., k}, some je{l, ../}, and
someae A, x, A{ad }; 1s consistent. By definition of —, we
get x;— y,. But then x, € #,5(w) and hence y, € A (w) as
well, contradicting our assumption that y,e AT - R. ||

—~

LEMMA 64. Let we AT and let Ooew. Then, for some
weZRiw),aew'.

Proof. Suppose Oaew. Let R = A5 (w). By the lemma
above, R>oA,.,[a] R By the rule (TG), we get
FOR>A,c.[a] R). By the axiom (Alndn), we get
I R> OR. Since w e R, we have - w > R and hence, - w >
OR Since Caew, w>ORAOa. Hence wo
O(RAa). Using the rule (TG), we find that (Raa) is
consistent. Hence there exists w' € R such that w' A« is
consistent. That is, « € w’ and the lemma is proved. |

The remaining details are as in Section 2. We then get:
THEOREM 6.5 (Completeness and decidability).

1. For any A-formula a, if \= 4 a, then |-p, a.
2. A-satisfiability is decidable
exponential time.

in nondeterministic

It is straightforward to establish the results of Section 3
on prime event structures and net systems with minor
notational modifications for A-formulas.
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We now turn to deterministic dts’s over a finite alphabet
A< X We can then define DSAT, and DVAL, in the
obvious way. The case when |A|=1 is standard:
decidability can be proved and an axiomatization found
(see, for example, [ Gol]). For 4| > 1, from the results of
the previous section, it is clear that DSAT , is not a recursive
set. The main surprise is that DVAL , is not recursively
enumerable either! Hence the completeness argument given
in Section 4 cannot go through. (There, we managed to
build a deterministic model for a consistent formula by
picking a new element from X to satisfy each future require-
ment. We cannot do this when the alphabet is finite.) We
will prove that DVAL ,, the set of all A-formulas valid over
the class of deterministic A-models, is I7}-complete and
hence not axiomatizable.

We use the so-called Recurring Colouring Problem
(RCP) to obtain our negative result. As one may expect,
RCP is recursively equivalent to the Recurring Tiling
Problem considered in [Har85] and the equivalence
between the two problems is shown in [ Parikh].

An instance of RCPisa tuple 4 =(C, R, U, ¢,) where C=
{¢co. €1, v Ci} 1s a finite non-empty set of colours, ¢, € C,
and R, U:C—(p(C)—J) are the “night” and “up”
functions.

A solution to 4 is a colouring function Col: NxN—- C
which satisfies:

1. Col(0,0)=c,.

2. V(i,j)e N x N, Col(i + 1,j) € R(Col(i, }))
Col(i, j+ 1)ye U(Col(i, j)).

3. YmeN:In>m: Col(0,n) =c,.

and

Thus RCP is CP with an additional constraint, which can
alternatively be stated as: along the Y-axis, an infinite
number of grid points are to be coloured with the recurring
colour c,.

We shall encode each instance 4 of RCP into an
A-formula f, and prove that 4 has a solution iff
B,e DSAT ,. For coding the functions R and U, we reserve
two letters x and y as before (this is why we need |4} > 1).
For convenience, we again assume C < P. In addition, we
reserve five atomic propositions (disjoint from C) denoted
{Y, D, AD, BD, RR}. Y will be used to mark the points
lying on the Y-axis. D will be used to mark the diagonal line
of the grid. BD and A D respectively will be used to mark the
points below and above the diagonal. Finally, RR will be
used to pick out the lines parallel to the X-axis, whose inter-
sections with the Y-axis have been assigned the recurring
colour ¢,. (Actually, for proving the negative result for
DSAT ,, we do not need the last four special propositions;
we introduce them only so that a uniform proof can be
given for trace transition systems to be introduced in
Section 8.)
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DermviTION 6.6. Let 4=(C, R, U, ¢,) be an instance of
RCP, where C={cy, ¢/, .., ¢} and c,e C. Then g,=%
AL, B, where

1. B ¥

2. B, ¥ O Ax,p}> Truen A

ad¢{x, y}

<CIE,-/¢\.- ~cj>.
<c,:>[x] \V c>.

c € R(c;)

TN

[a] False>.

(#8]
=
tad

g

O

> 1>x

=N
=
N

g

O

0

5. ﬂs"é‘m/\<ci:[y] V c>.

i=0 ce Ulc;)
6. B = O((DA~BDA~AD)
V(BDA ~DA ~AD)Yv (AD A ~D A ~BD))
7. B EDAD(DS([{x,y}1DA[x]BD
A[y] AD A O(D A RR)))

def

8. B O(BD>[x]BD)AO(AD [ y] AD)
def

9. B O((¢x> RR>RR)A(RR>[x] RR))
10, BoE YAD(Yo([y] YA[x] O~YA(RRD ).

x> |

f, through f5 are just like a, through a in the definition
of a4 in Section S, except that f, is a strengthened version,
where we exploit the fact that A is finite, and force models
satisfying f , to be based on {x, y}-frames. This turns out to
be crucial in enforcing the recurrence constraint along the
Y-axis. fi¢ to S5 describe the diagonal points, and the ones
below and above them. Further, £, ensures that an infinite
number of diagonal points are marked by RR as belonging
to the recurrence row. f, propagates the recurrence row
information along the x-direction to the right and the left.
B 1o describes the Y-axis and ensures that points lying on its
intersection with the recurrence rows are coloured by c,.

Before we present the proof of the reduction, let us intro-
duce some notation to extend the transition relation to
sequences of actions; this will be useful through this and the
next section of the paper. For a dts (S, 2, —), we define the
transition relation = < S x 2'* x S inductively by

o 5255 for every se€ S. (Here A denotes the null string.)
o Ifs L5 and 5’ % 5", ae X, then s £ 5",

Second, for peXZ* and neN, the string p” is given
inductively by

L ] po = i

° pn +1 _ pnp

Finally, for pe 2 * and ae 2, let #,(p) denote the number
of occurrences of the symbol a in the sequence p.
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LemMma 6.7. Let A=(C, R, U, c,) be an instance of RCP.
If A has a solution, then € DSAT ,.

Proof. Let Col: Nx N — C be a solution to 4. Define
now 7.8 = (S, —) as in Lemma 5.2. Then it is clear that 7.5
is a deterministic 4A-dts. Next define V: S — @(P) to be a
function which satisfies, for all i, je N:

1. V(i.j)<{Col(i.j)} u{D, BD, AD, Y, RR}.
2. DeVWj)iffi=j; BDe Vi, j)iffi<j; ADe V(i j)iff

3. RRe V(i j)iff Col(0,j)=c,.
4. Ye Wi j)iffi=0.

Clearly, V is a well-defined map. Let M = (TS, V). Then it
1s straightforward to show that M, (0,0) = f4,. |

To prove the converse, we need some intermediate
results. First recall that Lemma 5.3 showed that in a deter-
ministic model, when {{a, b} > True holds at a state s, we
have s+, o iff 5 £ ¢ iff 5 2% §'. This result, of course,

holds for deterministic A-frames as well.

LEMMA 6.8. Let 4 be an instance of RCP and let M =
((S, =), V) be a deterministic A-model such that for some
So€ S, we have M, so = f,. Let s, 5" € R(s,) such that M,
sED and s £>s', where pe {x,y}* Let m=¥(p) and
n="%(p). Then the following assertions hold:

‘ ()
1. ifmznthen s —=———3s
(xy)ynm

2. ifm<nthen s —===='
3. m=niff (M,s' E D).

Proof. We first prove (1) and (2) by induction on the
length of p. )

The base case, when p = Aistrivialasm=n=0, s =55, as
required.

For the induction step, let p=p'x (the proof when

[ X

p=p'y is similar). Let s” be such that s £ 's" 2 5. Let
m =#%.(p"). Clearly, n=4%,(p') and m=m’ + 1. There are
two cases:

Case 1. m>n. Hence m'>=n. By the induction
. (xp)Ytx™ =" .
hypothesis (1), s =====s" and since we have 5" 5 s/,
(X_V)" xm—n A
we get s =—===> ¢ as required.
Case 2. m<n. Hence m'<n By the induction
()™ pk

hypothesis (2), s ===>s", where k=n—m'. Let 1,,
ty, . t; ;€S such that

(xp)™ ¥ y ”
3':=>10;*t1"‘tk71;’5 .

Now we have t,_, > s" =5 ', hence by Lemma 5.3 for
deterministic A-frames, there exists ¢, _, such that 7, | =
ti _y = s'. By repeating this argument, we can find ¢, such

that s =2 )2 1, 5 1 Z== ' (refer to Fig. 9). Again
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FIG. 9. Case 2 of Lemma 6.8.

by Lemma 5.3 for deterministic 4-frames, ¢, LLEZN t;. Thus

{(xy)m . (xy)" yn ="
=== 1. Since, k—1=n—m, we get s =====>5', as
required.

Thus (1) and (2) are proved. Now we prove (3).

Suppose m=n. By (1)and (2), we get s L2207, &' We show
by induction on m that M, s’ = D. The base case when
m =0 is trivial, since m =0 and hence s =5’ and M, s = D by
assumption of the lemma. If m >0 then there exists s" € S

Gy =1

such that s === 5" == 5. By induction hypothesis, we get
M, s"kE=D. But M, sy=f, and s" € R(s,), hence M,
s" k= [{x,y}] D and hence M, s' k= D, as required.

Suppose m #n. Then eitherk m<n or m>n. Suppose
m<n. By (ii), we get s g"='y=~»s’, where k=(n—m)>0.
Thus we have ¢, ¢, .., t; _; €S such that s ‘—ii—;to—y—»
ty -+t _, > 5. But the proof above tells us that M, ¢, = D.
Now, using f,, we get M, t;=[y] AD and hence M,
ty = AD. B ensures that M, ¢, = [ y] AD. Repeating the
argument, we see that M, 5" = AD. But then, because of S,
we get M, s' = ~ D. On the other hand, when m > n, we use
(1) above in a similar fashion to show that M, s’ = BD and
thus again appealing to ., we get M, s' = ~ D. Hence the
result. |

LeMMA 69. Let A=(C, R, U, c,) be an instance of RCP
such that € DSAT. Then 4 has a solution.
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Proof. let M,sok=f,, where M=(TS, V), TS=
(S, —) is a deterministic 4A-dts over X and s,€ S.

As before, for constructing a colouring function for 4, we
adapt the following strategy: we first decide the colours on
the diagonal in N x N and then inductively fill out larger
and larger squares. For each point on the grid, we associate
a state in Z#(sy); this is sufficient since the formula
By A B4 A Bsis satisfied at that state and hence the colouring
function can be easily “pulled out” The only complication
which arises now is that when we construct the diagonal, we
have to ensure that infinitely many points along the
diagonal satisfy the proposition RR.

The function Diag: N — #(s,) is defined inductively. Let
Diag{0)=%"s,. Inductively we can assume for k>0,
Diag(k —1)=1s5¢€ R(s,).

By B, and f8,, M,sk= DA {{x,y}>(DA O(DARR)).
Hence, for some p such that [p[>0, sZ>s and M,
5" (D A RR). But then by f,, we find that pe {x, y} *.

Now, by Lemma 6.8, we get s %s where m =

£.(p)=%,(p). Let 1,,.., 1, €S such that s
t,_1=>s'. Set t, =5 Clearly, for all je{l,. ., m}, M,
t;|= D. Define Diag(k — 1+ j)=%"1,, for je {1, .., m}.

By induction, Diag is totally defined. Clearly, we have
Diag(i) =% Diag(i+ 1), for all i.

We again construct an infinite sequence of function pairs
{(¥,,, Col,)},,~owith ¥, {0, .., m} x {0, .., m} — S and
Col,,: {0, .., m} x {0, ..,m} - C such that the following
conditions are satisfied at every stage m, m > 0:

(Cl) Col,(0,0)=c¢,

(C2) ¥, (i,j)= W, (i+1,)) [0<i<m, 0<j<m]
(C3) Y (i,j)=> ¥, (i,j+1) [0<i<m,0<j<m]
(C4) ¥, (i, )= Diag(i) [0<ig<m]

(CS) Col, (i+1,j)e R(Col, (i, j))
(C6) Col, (i,j+1)e U(Col,(i,j))

[0<i<m, 0<j<m]

[0<i<m,0<j<m].

The construction proceeds exactly as in the proof of
Lemma 5.4 and is hence omitted.

Finally, define Col: N x N — C by Col(i, j) =% Col,(i, j),
where m = max{i, j}. We now show that Col(0, j) =c,, for
infinitely many j; the other conditions on Col/ are easily seen
to be satisfied thanks to the conditions above.

We know that by construction, M, ¥,.(m, m) = RR for
infinitely many m. Fix any such m. If m=0 then
M, ¥,_(0, m) = RR. Otherwise note that ¥, (m—1, m) >
¥ (m,m) and hence M, ¥, (m—1,m)E=<{x> RR By f,,
M, ¥,.(m—1,m)E RR Repeating this argument, we
find M, ¥, (0, m)= RR. But then by f,,, we get M,
¥..(0, m) = ¢, as well. Since this is true for infinitely many
m, the recurrence condition on Col is satisfied. |]
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THEOREM 6.10. Suppose |A|>1. Then DSAT, is X}-
complete. Hence DVAL, is a II|-complete set and not
axiomatizable.

Proof. By the earlier Lemma 6.7 and Lemma 6.9, any
instance 4 of RCP has a solution iff the formula
B,€ DSAT ,. Since RCP is X |-complete [Parikh], so is
membership in DSAT ,. |}

This negative result is extended to trace languages in
Section 8.

7. FINITE DTS’S

An important and interesting subclass of dts’s is that of
finite dts’s. Recall that the dts 75 = (S, 2, —) is said to be
finite if and only if both S and — are finite sets. Clearly if
TS=(S, %, —)is adts over 4, where 4 € p,(2), then —
is finite whenever S is finite. In general, we could have S
finite and — infinite. One result we will show here is that our
logic cannot distinguish between these two situations even
in the presence of determinacy. As a result, it suffices to deal
with just the strong notion of finiteness, where both S and
— are finite.

We say that a formula a« has a finite model (that is, a
model based on a finite frame) iff there exists a finite model

=((S,—), V) and se€ S such that M, s =« Let FSAT
denote the set of all formulas which have finite models and
let FVAL denote the set of formulas that are valid over the
class of finite models. Then FDSAT and FDVAL will denote
the relevant sets of formulas with reference to finite deter-
ministic models. The sets FSAT ,, FVAL ,, FDSAT ,, and
FDVAL ,, where A€ pg,(2), are defined in the obvious
way.

First, we review all our earlier results in the context of
finite models. The system ND is easily seen to be a sound
and complete axiomatization of FVAL; finiteness of models
does not disturb soundness, and the completeness proof in
Section 2 { Theorem 2.7) does produce a finite model for any
ND-consistent formula. Similar remarks apply for ND , and
FVAL ,.

Turning now to the results of Section 3, it is clear that the
proof of Theorem 3.4 cannot work if we insist on finite
models based on event structures: since event structures are
poset-based, a formula such as O {a) True will necessarily
require a model based on an infinite event structure.
However, the problem is open in the case of elementary
net systems. We do not know whether for every formula

in FSAT, there exists a model M=(TS, V) such
that 7S=7S ,  for some finite labelled elementary net
system 4.

Before turning to FDSAT, we show that our logic cannot
distinguish between finite dts’s and finite state dts’s,
deterministic or otherwise:
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PropPOSITION 7.1. Let M =((S, =), V) be a model, S a
finite set, so€ S and M, s, = a. Then

1. aeFSAT.
2. Suppose M is a deterministic model. Then a. € FDSAT.

Proof. We prove only part (2); the other proof follows.
Assume M, s,, « to be given. First fix an injective function
f:SxS— (X — Voc(a)). The existence of f is assured since
2 is infinite, whereas both Sx S and Voc(a) are finite.
Define 7S’ =% (S, —'), where

- "éf{(s, u,8') | s 5" and u < Voc(a)}

U (s, {fls,s')},8") | s—> 5" and a ¢ Voc(a)}.

It is easy to verify that 7'S’ is a dts. Determinacy of 7S’
follows from that of 7'S and the injectiveness of f. Further
TS' is finite since S was assumed to be finite and —’ is finite
by construction. From the definition of —', we can make the
following crucial remark about 7'S":

Vs, s'e€S:s' € Brg(s) WM &' € Brgl(s).

Consider M' =% (TS", V).

CLamM. VseS:VeCL(a) M,sE=fiff M',sE= B

The proof of the claim proceeds by an easy induction on
the structure of § and is omitted here. Since M, s, = a, by
the claim above, we have M’ s,k a as well. Hence
ae FDSAT. |

The decision procedure given in Section 2 also shows that
the membership problem for FSAT is decidable in non-
deterministic exponential time. In the case of DSAT we
showed undecidability in Section 5. However, we do not
know whether the membership problem for FDSAT is
decidable or not. We do know, thanks to Proposition 7.1,
that FDSAT =) 4. yp 5, FDSAT 4. Moreover, we can also
easily deduce that FDSAT is a recursively enumerable set.
Hence FDVAL is at worst co-r.e. But it might well be the
case that FDSAT is not recursive, in which case FDVAL
would not be r.e. and hence not axiomatizable.

On the other hand, when A€ g4,(2), |4 > 1, we can
show an undecidability result for FDSAT ,. We show this
with yet another variant of the colouring problem called the
Finite Colouring Problem (FCP for short).

An instance of FCPis a triple 4 = (C, R, U, ¢;) where C =
{co, €1, s €1} s a finite non-empty set of colours such that
c;e Cand R, U: C— p(C) are the “right” and “up” func-
tions as before. A solution to 4 is a pair (Col, (K, L)), where
K, LeN and Col: {0, .., K} x {0, .., L} — Cis a colouring
function which satisfies:

1. Col(0,0)=c,.
2. Colli+1,/)e R(Col(i, ), 0<i< K, 0<j< L.
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3. Col(i,j+1)e U(Col(i, ), 0 <i<K,0<,j<L.
4. Col(K,L)=c,.

ProrosiTioN 7.2. FCP is undecidable.

Proof (Sketch). We can reduce to FCP the halting
problem of Turing machines started on a blank tape with
the head on the leftmost cell. Each such TM can be coded
as an instance 4y, of FCP. The coding scheme closely
follows the one given in [ LP]. We can then show that TM
halts if and only if 41, has a solution.

We now reduce each instance of FCP to a membership
problem for FDSAT,. In other words, we encode each
instance 4 of FCP into a formula y, such that 4 has a solu-
tion iff y, € FDSAT ,. It is assumed that | 4| > 1. We ensure
that y is an A-formula. Without loss of generality, let
x, y € A and as before, we reserve x and y respectively for R
and U. As usual, we let C < P. In addition, we use two
special propositions, UM and RM, respectively for
“up-margin” and “right-margin.”

DerFINITION 7.3. Let 4=(C, R, U, ¢;) be an instance
of FCP, where C={cg,¢(,..,c,} and c;eC. Then
ya=%"A°_, 7;, where

Ly, € ey n O(epn UM A RM).
2.y, ¥ 0O ({{x,y}> True

E(~UM/\~RM))/\|:|< A\

de(A—{x.y})

[d] False).

3.9, %0 ;\ ( /\ ~cj),
4. 9,40 /A\ ((‘ >[x] V c).
= € Rie))
X
5.y =e /\ <c oyl V )
= ce Ule))
6. 76 = O((UM > [x] UM A [ y] False)

A(RM o[ y] RM A [ x] False)).

The first clause, apart from capturing the origin con-
straint, also specifies a termination condition. The second
clause forces the creation of a grid as in the earlier reduc-
tions, but this time only up to an upper margin (UM ) and
a right margin (RM). The next three clauses are familiar.
The last clause ensures that the propositions UM and RM
acquire their intended meaning.

LemMAa 74. Let A=(C, R, U, ¢;) be an instance of FCP.
If A has a solution, then y ;€ FDSAT ,.

Proof. Let (Col, (K, L)) be a solution to FCP. Now,
define T'S = (S, —) as in the proof of Lemma 5.2, but now
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for S=1{0, .., K} x{0, .., L}. Next define V: S5— @(P) to
be a map which satisfies, for all , je {0, .., K} x {0, .., L}:

e Vi, j)= Colli,jyw { UM, RM}.
s RMe Wi j)iffi=K
o« UMe V(i,j)iffj=L.

Clearly, V i1s a well-defined map. Let M = (TS, V). Then
it is easy to show that M,(0,0)}=y,. Hence y,e
FDSAT,. 1

LemMa 7.5. Let M =(TS, V) be a model where TS =
(S, —) is a finite deterministic dts over A and s, € S such that
M, so b=y, where A is an instance of FCP. Let s, s' € #(s,).
Then the following statements are equivalent:

1 sl o

2. I, eSis-Ss 2,
3. 3s,eSis s,

Proof. (1) implies (2) and (3) since 7S is a dts. To show
that (2) implies (1), assume s—> s, ~—s,. Then M, s, |=
{y> True. Now, because of y, M, s = (UM = [ y] False).
Therefore M, s, = ~ UM. Further, M, s = (UM > [x] UM)
and so, M, s = ~ UM. From the fact that s = s, we get M,
sE (x> True and thanks to y,, we have M, s ~RM.
Thus, M, s =(~ UM A ~ RM). Now, by y,, we get M, 5 =
{{x,y}> True. Therefore, for some s” € S, we have PRI RN
Hence there exists s° such that s— s, 5”. By deter-
minacy of 7S, we get s, =’ and hence 5" =s".

By a symmetric argument we can show that (3) implies
(I)aswell. |

LEMMA 7.6. Let A be an instance of FCP and let M =
((S, =), V) be a finite deterministic A-model such that for
some sy S, we have M, sq = v,. Let s, s' € A(s,) such that
s=>s', where pe{x,y}* Let m=%_(p) and n=%(p).
Then the following assertions hold:

(xvyn xm=n

. ifm>=nthen s ———=3s

’

2. ifmgnthens%s’.
Proof. Identical to the proof of (1) and (2) of

Lemma 6.8, except that instead of appealing to Lemma 5.3,
we refer to Lemma 7.5 above. ||

LEMMA 7.7. Let A=(C, R, U, ¢;) be an instance of FCP
such that y e FDSAT ,. Then A has a solution.

Proof. Let M,sy=y,, where M=(TS, V), TS=
(S, —) is a finite deterministic dts over 4 and s, e S. Since
M, so = Olepn UM A RM), there exists s, € S and p such
that s, £>5,. y, ensures that p e {x, y} *. Let m =4 (p) and
let n=%,(p). We have three cases to consider:

Case | (m=n). By Lemma 7.6 above s, %s,. Let
iy L1 €8 such that so=1,=>1,---1, | =>1,=5,.
Define Diag: {0, .., m} — S by Diag(k)=%1,. Following
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the proof of Lemma 5.4, we can construct a function pair
(¥, Col,)with ¥, : {0, ..,m} x{0,..,m} — S and Col,,:
{0, ..., m} x {0, .., m} — Csuch that Col,, is a solution to 4.
Case 2 (m<n). By Lemma?7.6 s, L’,;v, Let
s'eS such that s, LN AN s;. Again we follow
Lemma 54. Construct (¥, Col,,) as in the proof for
Case 1, with ¥, (0,0) =5, and ¥,.(m, m)=s'. (Note that
we no longer maintain C2 of Lemma 5.4.) Let k =»n — m. Let
Liyowfg_1€Ssuchthat s’ =1, ¢, 1, |- 1,=5,.
Now, we define for /e {1, ...k}, ¥,,, ,: {0, .., m} x {0, ...,

m+1l} —-S and Col,  ;:{0,.,m}x{0,. .. m+1}—>C
First set
. oy def .-
y/rn+1(l’.])= ylm+l~l(’ﬂj)
and

Col,, , (i, j) = Col,, ., 1(i,j), 0<i<I—1,0<j</—1.
Next set ¥, , ,(m,m+1)="1,, Now we have

¥ o m—1,m+l—1)-5 ¥ (mm+i—1)

¥ (mym ),
Hence there exists s” € S such that
Y dm—1m+1-1)5 5" -5 W, (m,m+1).

Set ¥, (m—1,m+1)=%"s" Repeating this argument,
we define ¥, (jm+]) for all j 0<j<m
Col,,, . ;(j, m + 1) can be suitably defined for 0 <j < m.

It can be easily checked that Col,, ., that is Col,, is a
solution to 4.

Case 3 (m>n). Similar to the proof for Case 2. This
time we follow Lemma 5.4 but do not maintain condi-
tion C3. |

THEOREM 7.8. Let |A|>1. Then the
problem for FDSAT, is undecidable.
FDVAL , is not axiomatizable.

membership
Consequently,

Proof. The undecidability follows from Proposition 7.2,
and Lemmas 7.4 and 7.7. It is easy to see that FDSAT , is
re. and hence FDVAL, is not re. and therefore not
axiomatizable. ||

8. TRACES AND TRACE TRANSITION SYSTEMS

In this section, we show that our proof methods yield
results for transition systems based on the theory of trace
languages [Maz]. Specifically, we shall show that the
satisfiability problem for our logic becomes undecidable
when it is interpreted over models based on zrace transition
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systems. In fact, the result holds for a much weaker logical
language—the eventuality operator of temporal logic
with an action-indexed modality suffices to establish
undecidability. We can extend the result to subclasses as in
the previous two sections.

As we noticed, our proofs of undecidability rely on a
weaker property than determinacy, specified in Lemma 5.3.
In particular, the partial commutativity of actions gives rise
to the same phenomenon. In concurrency theory, this arises
in the context of Mazurkiewicz’s trace languages. Here
we present only the bare essentials of this theory. For
background and more details, refer to { Maz].

A concurrency alphabet over X is a pair (X, I), where
I< X x 2 is an irreflexive and symmetric independence rela-
tion. Our results will require the concurrency alphabet to be
non-trivial, that is, I has to be a non-empty independence
relation. Note that this forces | 2| > 1.

The independence relation [ induces a natural equiv-
alence relation over £* which is in fact a congruence with
respect to concatenation. This congruence is the one
generated by equations of the form ab=ba for each
(a, b) e I Stated differently, we first define =, X * x X' * as
p=,p ff 3p,, p,eZ* and (a, b) e such that p=p abp,
and p'=p bap,. Then =,, defined to be ( =,)* is the con-
gruence we want. 2*/=, is called the partially commutative
trace monoid over (X, I} (with [p],-[p'],=[pp’'], being
the monoidal operation). A trace language over (X, 1) is
simply a subset of Z*/=,.

Thus the idea is that if @ I b, then whenever a and b occur
adjacent to each other in a sequential description of a run of
the system (modelled by the trace language), a and b have
in fact occurred with no order over their occurrences. Hence
a sequence of the form p, abp, represents the same stretch of
behaviour as a sequence of the form p, bap,.

A number of closely related proposals have been made in
the literature to carry over these ideas to transition systems
[ Bed, Shi, WN]. We define a class of transition systems for
which the only constraint is the commuting of sequences of
concurrent actions. This suffices for our purpose, and our
negative results will carry over to the transition systems
defined in the above papers.

DEFINITION 8.1. A trace transition system (tts) over the
concurrency alphabet (X, I') is a (countable) labelled tran-
sition system 7S =(S, X, —) such that for every (a, b) €1,
for every s¢, 5,, 5,€ S, if 5o~ 5, ~2> 5, then there exists s/
such that s, 2> s/, % 5,.

Instead of Step-TL, we now work with the simpler
language Action-TL, which has the & modality as usual and
the action modality {a) foreveryae X Let P be a countable
set of propositions. The formulas of this language are:

+ Every member of P is a formula.

o If @ and f§ are formulas then so are ~a, a v #, Ca and
{aya,forae .
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The semantics is defined as before. For a tts-based model
M=((S, —), V)and s S, we have

M, s = (a) aiff there exists s such that s> s" and M, s = a.

Clearly, Action-TL is a weaker language than Step-TL; in
fact, it corresponds to the formulas of Step-TL where steps
are restricted to be of size 1.

DerFINITION 8.2. Let (2, 1) be a concurrency alphabet.

« o is said to be [-satisfiable iff there exists a model M =
(TS, V), where TS= (S, —) is a tts over (X, ]) and s, € S
such that M, s, = a.

e TSAT,is the set of all I-satisfiable formulas.

» We write |=, a if a is valid over all models over (X, 1).

Given a nonempty independence relation I, we show
undecidability of I-satisfiability, again by reducing CP to it.
Let 4=(C, R, U) be an instance of CP. We need to reserve
two actions from 2 for R and U. We choose x and y, where
{x, y) e I. Below, whenever appropriate, we follow the nota-
tions and conventions used in proving Theorem 5.5. As
before, a4 is the conjunction of five formulas, except that we
modify a, to be O{x>{ 3> True.

LEMMA 8.3. Let A=(C, R, U) be an instance of CP. If A
has a solution, then o ;€ TSAT,.

Proof. From the dts constructed in the proof of
Lemma 5.2, one can clearly extract a tts over (X, ]) by
forgetting the {x, y} transitions. Hence a , € TSAT,. |

LEMMA 84. Let A=(C, R, U) be an instance of CP such
that a € TSAT ;. Then A has a solution.

Proof. Let M,syl=a,, where M=(TS, V), TS=
(S, =) is atts over (2, I) and s, € S. By definition, #(s,) is
countable. Fix an enumeration of #(s).

We proceed exactly as in the proof of Lemma 5.4. Instead
of Lemma 5.3, we appeal directly to the definition of a trace
transition system. The few modifications required are as
follows:

1. In Step 2, when choosing ¥, ,(m+1,m+1), set
it equal to s, where s is the state with the least index
(in the enumeration of #(s,)) with the property that
¥..(m, m) SEEZN)

2. In Step 3, when choosing ¥, . (m+1,)), for
0<j<m, appeal to Lemma 8.4 instead of Lemma 5.3 and
set it equal to s, where s, is the state with the least index (in
the enumeration of #(sy)) with the property that
Vram )5, ¥, (m+1,j+1). A similar modi-
fication is done for the choice of s, in Step 4.

The required result now follows easily. |

THEOREM 8.5. Let (X,1I) be a nontrivial concurrency
alphabet. I-satisfiability is undecidable.
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What about an axiomatization? The following is a sound
axiom system. All the axioms are derived from the earlier
axiomatization, but now restricted to the language
Action-TL. The only novelty is in the axiom (A,,) which
represents the commuting condition for @ and b.

Axiom System NT,.

Axiom Schemes.

(AO0) All the substitutional instances of the tautologies
of PC

(Al) O(a>p)=(Da>0f)

(A2) Oaoanla]asnO0Ox

(A3) [aJla>f)>([ala=>[a]p)

(A) {ad{bd>a>bdla)a foralb.

Inference Rules.

a,a>df «
3 {(TG) T

(MP)

If 7is a finite relation, we can show that I-validity is
completely axiomatized by NT,.

THEOREM 8.6 (Completeness). Given a concurrency
alphabet (X, I), where I is a finite independence relation on X,

if =% then (o, .

Proof. The proof follows the lines of that of
Theorem 4.9. When satisfying live future requirements, we
pick an action d which is outside the vocabulary of « and
which, in addition, does not commute with any other action
in X Since [ is finite and X2 is countable, this is always
possible. |

Consider now the case where the alphabet X is finite.
We get the stronger undecidability result of Section 6.
Since the techniques involved are very similar to the ones
used earlier, we will give only an informal sketch of the
proof.

Given an instance 4 of RCP, we define the formula f, as
before except that f, is defined to be O({x>{y) True A
Augixy [al False). It is easy to show that f, is
I-satisfiable, where (without loss of generality) (x, y)el
To see this, we only need to extract from the dts constructed
in the proof of Lemma 6.7 a tts over ({x,y}, {(x,p),
(y, X)}).

On the other hand, given a model for the formula g,
to construct a solution the instance 4 of RCP, one has to
simply go through the steps in the proof of Lemma 6.9,
making the necessary modifications as suggested in the
proof of Lemma 8.4, using the fact that #(s,) is enumerable
(where s, is the state at which the formula £, is
satisfied in the given model). Indeed, the proof of
Lemma 6.9 follows the given lines only so that it applies for
tts’s as well.
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THEOREM 8.7. Let (X, 1) be a nontrivial concurrency
alphabet over finite E. Then I-satisfiability is X |-complete.
Hence I-validity is I1 {-complete and not axiomatizable.

Similarly, we can consider finite trace transition systems.
The corresponding satisfiability problem is undecidable and
hence validity is not axiomatizable.

THEOREM 8.8. Let (X, 1) be a nontrivial concurrency
alphabet. Then I-satisfibiality over finite tts’s is undecidable
and validity is not axiomatizable.

An analogue of Theorem 8.7 is already available in
[Har84], but in the context of the global consequence
problem of PDL. The corresponding notion of transition
systems would be those which satisfied

b . .
522 5" and 525 5" implies s’ = s".

This would be the case for deterministic tts’s.

Our result for Action-TL shows that even with nondeter-
minism allowed, the commuting condition of trace
transition systems makes even a very weak logic highly
expressive. On the other hand, Step-TL—and even the
stronger logics considered in the next section—remain
decidable over nondeterministic distributed transition
systems, where concurrency is explicitly presented rather
than being semantically inferred.

9. EXTENSIONS

In this section we look at some different logical languages
for the frames we have been considering. The two extensions
we consider are to allow program operators in place of the
temporal <, and to strengthen the step modality to refer to
intermediate states in the cube.

9.1. Regular Programs over Concurrent Steps

The notion of a step can be used to obtain a
straightforward generalization of Propositional Dynamic
Logic (PDL) [Har84]. The resulting language, which we
shall call Step-PDL, is closely related to the language used
so far. Most of the results we have proved so far go through
for Step-PDL with suitable modifications.

First we can define the class of programs I15:

» Every member of g4.(Z2) is a program.
o If = and =’ are programs, then so are n+n', n; 7

and 7*.

Now the language of Step-PDL consists of the set of
formulas built from /7, and P, a countably infinite set of
atomic propositions, by closing under negation, disjunction
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and the modality {n)> a, for n e IT.. PDL is usually defined
with a test operator, but we do not include it here for the
sake of simplicity.

As Kripke frames for Step-PDL, we will once again use
dts’s. To do so, we first need to extend the step transition
relation of a dts to a program transition relation.

Let 7S = (S, 2, —) be a dts. Then =, Sx xS is
defined inductively as follows (we drop the TS subscript for
convenience ):

o 5 =5 iff s> s,
R+ - T ’ 7 '
o s=—>s ffs =5 ors =y
o s = T I €S s S5 T8
n* ' 4 . n* ' 0 __def
e s==s5 iff 3k=0:5=s", where z"=°"¢ and
gt =41 7% for k =0.

The notions of frame and model are as before. The notion
M, s = a, for s € S'is defined inductively, the new case being

M, sE{n)aiff 35 S: s =,c5 and M, s =«

Satisfiability and validity are defined as before. One crucial
observation here is that for Step-PDL it makes no difference
whether the frames are dts’s over 2 or dts’s over some finite
subset of X. (For the negative results, of course, we need
|4 >1).

A complete axiomatization of the set of valid formulas of
Step-PDL is obtained by adding the empty step axiom
a={ > a and the (Step) inference rule to the well-known
Segerberg axioms for PDL [KP, Har84]. As a conse-
quence, satisfiability in Step-PDL is decidable in nondeter-
ministic exponential time.

It can be easily checked that the completeness results for
elementary net systems and elementary event structures
presented in Section 3 go through for Step-PDL. As for the
negative results, we do not get an axiomatization of the
set of deterministically valid formulas as deterministic
satisfiability for Step-PDL formulas is X |-complete. Hence
deterministic validity is not axiomatizable. (In the coding of
RCP, we uniformly replace [J by [(x+yp)*] and © by
Ux+y)*>.)

The strong negative result goes through for trace
transition systems as well. Further in the case of finite deter-
ministic dts’s and finite trace transition systems, once again
the negative result obtains, using the same transformation
in the formulas used for coding earlier.

We conclude by noting that instead of generalizing the
atomic programs of PDL to concurrent steps, we could also
generalize them to finite multisets of actions. We could in
fact consider finite pomsets over X [ Pra86 ] to be our atomic
programs. Correspondingly, we would have to index the
modality by finite multisets or by finite pomsets. In each
case, there is a corresponding (and notationally more
complicated) version of the inference rule (Step) which leads
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to completeness, and as a by-product, to decidability.
Naturally, the negative results we have obtained will also go
through.

9.2. Referring to Intermediate States

One drawback of the logical languages we have looked at
so far is that we have been unable to axiomatize our models
with a finite set of axiom schemes and inference rules. By
considering a more expressive modality for the u-cube,
however, we can overcome this difficulty. We shall merely
give a sketch of the main ideas; the details can be worked
out.

Given a set of atomic propositions P, the formulas of the
language Cube-TL are inductively specified as:

o Every member of P is a formula.
o If « and f§ are formulas then so are ~a, a v #, and Ca.

» Letue pp(2) Ifag, ., a, .., «, are formulas (v = u),
then {u)<{ay, ..., o, is a formula.

The last clause defines a formula {«) ¥, where ¥ can
be viewed as a function from g(u) to formulas, where
¥(v) = a,. The formula states that there exists a u-cube with
the states in the cube satisfying the corresponding formulas
from V.

Now given a model M =((S, =), V)and se S,

M, sk Cuy ¥ iff e Flu, ST D) flu), f(B)=s

and M, f(v) = ¥(v) for vcu

That is, the formula (u)> ¥ forces the existence of a u-cube
with intermediate states satisfying the formulas from ¥.

Observe that ¥ is at least exponential in the size of u.
Our earlier modality in the language Step-TL, {u) «, is
defined to be {u)> I', where I'(u)=a and I'(v) = True, for
vcCu.

Given v = v’ S u and a function ¥ from g (u) to formulas,
define its restriction ¥, . to be a function assigning
formulas to @(v' —v): ¥, (1) =" W(vuu,), for u, <
v —v.

The step axioms and inference rule are:

(Ada) a (@ (x>
(Step) '\'<UI—U> gl'-“uv" for some U_C_U'gu.

~(ud ¥

With these axioms and this rule, completeness and
decidability can be proved along the lines of Section 2. Since
Cube-TL is more expressive than Step-TL, all the negative
results for that language will go through.
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10. DISCUSSION

In this paper we have studied logics whose models are
distributed transition systems of a certain kind. The central
notion underlying these transition systems is that of a
concurrent step. The properties that are demanded of a step
capture the intuition that the actions named in the step
occur causally independent of each other. The paper is then
essentially a logical study of this basic notion concerning
distributed systems.

The main results of the paper are summarized in Table 1,
where we have fixed a countable alphabet 2 and a finite
subset 4 of X.

In addition, we have shown that the logical system ND is
a complete axiomatization of validity over the class of
labelled prime event structures and hence over the class of
labelled elementary net systems as well.

Our positive results show that the step notion lends itself
to a logical treatment with the help of fairly standard techni-
ques. In fact, as the ideas sketched in Section 9 show, the
logic Step-TL itself can be viewed as a smooth extension of
PDL in the presence of steps.

On the other hand, our negative results show that from a
logical standpoint, determinacy combined with a non-inter-
leaved notion of a transition is very expressive. The results
of Section 8 provide additional insight: since the negative
results carry over for trace transition systems, we can see
that it is not just determinacy together with “non-inter-
leaved” transitions that generates such expressive power;
even the kind of partial commutativity of actions that is
often associated with independent actions leads to
undecidability.

Turning now to related work, Valiev [ Val] presents a
strong negative result for a variant of PDL. In this variant,
in addition to the usual program constructs of PDL, one

TABLE 1
Step-TL: Axiomatizability and Satisfiability
Frames All models Finite models
dts’s Axiomatizable Axiomatizable
decidable decidable
det dts’s Axjomatizable ?
undecidable At most r.e.
trace ts’s over (X2, )  Axiomatizable for finite / ?
undecidable At most r.e.
A-dts’s Axiomatizable Axiomatizable
decidable decidable
det 4-dts’s Not axiomatizable Not axiomatizable

highly undecidable undecidable

Not axiomatizable
undecidable

Not axiomatizable
highly undecidable

trace ts's over (A, I)
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also has the shuffle and the iterated shuffle operators. The
techniques used here are very different from Valiev’s work.

Penzcek [ Pen] has also reported a number of negative
results for a logic interpreted over deterministic asyn-
chronous transition systems. The logical language uses
past operators. The results of Section 8 show that the
negative results need neither determinacy nor the past time
modalities.

As for other logics based on labelled transition systems,
two well-known instances are the Hennessy—Milner logics
(HM] and the Modal g-Calculus [Sti]. We have not yet
“operationally” characterized (in the Hennessy—Milner
style) the equivalence notion induced by our logic. It is also
not clear at this stage whether the Modal g-Calculus
augmented with the step notion leads to an interesting
variant.
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