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Abstract

In this letter we will revise the steps followed by A. Einstein when he first wrote
on cosmology from the point of view of the general theory of relativity. We will argue
that his insightful line of thought leading to the introduction of the cosmological
constant in the equations of motion has only one weakness: The constancy of the
cosmological term, or what is the same, its independence of the matter content of
the universe. Eliminating this feature, I will propose what I see as a simple and
reasonable modification of the cosmological equations of motion. The solutions of
the new cosmological equations give place to a cosmological model that tries to
approach the Einstein static solution. This model shows very appealing features in
terms of fitting current observations.
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1 Introduction

The way Einstein arrived at his formulation of a cosmological model for the universe was
based on two basic hypothesis [1]. From the one side, he was struggling with the idea that
a single particle in the Universe couldn’t have inertia as inertia should have a relational
origin. From the other side, he thought that the universe could be described as a gas of
stars close to equilibrium. After some intricate reflections, he arrived to the notion of a
finite universe without boundary, and static on the overall, that is, at equilibrium. For
that he introduced the now famous cosmological constant as a way of compensating the
purely-attractive behaviour of matter in his equations.

In 1930 A. Eddington proved that Einstein’s static Universe was unstable under ho-
mogeneous departures from the equilibrium state [2]. This together with the observation
of the recession of galaxies led progressively to the abandonment of Einstein model. Any-
way, the Einstein model has been the subject of several investigations over the years [see

∗
carlos@iaa.es

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36015579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/gr-qc/0611090


Cosmology as a search for overall equilibrium 2

for example [3]-[6]]. The most recent is a revision of its possible role as the initial state
for a past eternal universe [7].

Our point of view in this letter is that the reasoning that led Einstein to his model
is too powerful to be simply abandoned. Of course, from nowadays perspective, his
assumption of a universe at precise overall equilibrium clearly needs some revision. But
more importantly, one needs to revise his way of incorporating an equilibrating mechanism
by adding a cosmological constant.

At that time, physicist didn’t seem to suspect that the cosmological term could be
just another type of manifestation of matter, what we now use to call a vacuum-energy
contribution1. For example, now we know that the presence of any quantum field in nature
could give place naturally to a vacuum-energy contribution with an equation of state of
the form pV = −ρV . However, when the quantum fields are considered as fundamental,
the naive calculation of this vacuum-energy contribution is always huge, being completely
at odds with the observations (apart from being completely independent of the total
amount of energy in the non-vacuum component of the field).

In recent years we have learnt, mostly through the works of G. Volovik [10, 11], that
the universe that we experience might be an emergent structure “living” at the low-energy
corner of a fundamental quantum system with a finite number of degrees of freedom, sim-
ilar somehow to a quantum liquid. Remarkably, in these systems the set of excitations
with respect to the vacuum state include collective-excitations, describable in terms of
geometrical (gravitational) an electromagnetic fields, and quasi-particle excitations, de-
scribable as quantum matter (fermionic) fields. A very interesting insight coming out
from the observation of these systems is that, the calculation of a vacuum energy contri-
bution performed by adding the zero-point energies associated to the quantization of the
different quasi-particles modes leads to grossly incorrect results. Vacuum-energy has to
be calculated by other means.

It is not difficult to understand that for a condensed matter system to have an equi-
librium vacuum state in the absence of external forces its vacuum pressure has to vanish,
pV = 0 . This is exactly what happen with quantum liquids. Now, if these type of systems
are brought out of their lowest energy state by exciting, for example, a thermal cloud of
quasi-particles within them, they tend to reach a new state of internal equilibrium. The
pressure associated with the quasi-particles, pM , is equilibrated by a newly generated
vacuum term pV such that pM + pV = 0. In this way we see that the vacuum term is
not constant, but depends on the characteristics of the matter contribution, tending to
counterbalancing it. The exact counterbalance occurs only at precise equilibrium. If these
systems were set up out of equilibrium, they would evolve towards the equilibrium point.
During this transient regime one would have pM + pV 6= 0.

Another line of thought, this time exclusively within the context of gravitational in-
teractions, that also suggest the existence of an equilibrating mechanism is the following.
Einstein gravitational law, expressed as Gµν = 8πGT M

µν , has been seen to work to a high
degree of accuracy in the astronomical (as opposed to cosmological) context2 (in the weak

1At least it seems that it was not a popular idea. Remarkably, the first account of the possible existence
of zero-point energy contributions can be traced back to Nerst in 1916 [8]. However, one could say that
the idea of a connection between zero-point energy and cosmological constant was not popularized up to
Zeldovich’s work [9].

2By Einstein gravitational law I mean not only that Einstein tensor is equal to an energy-momentum
tensor, but that there is a way of prescribing the form of the energy-momentum tensor given some local
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field limit they precisely give place to Poisson’s equation ∇2φ = ρM for the Newtonian
potential φ). However, if the universe was on the overall a three sphere (finite without
boundary), one would expect in Newtonian terms that a quantity of localized matter
will affect another quantity of localized matter with two direct contributions, associated
with the shortest and the longest geodesic path between the two masses, plus additional
contributions associated with geodesic paths connecting them after having traverse en-
tirely the universe one or several times. Some of these contributions are attractive (as
the one associated with the shortest direct path between the masses) but some other are
effectively repulsive (as the one associated with the longest direct path). As a result, two
masses at a fixed distance will affect each other differently depending on the size of the
universe. For example, in a extreme situation, two masses located at antipodal points of
a closed universe would exert no net-force into each other. We can symbolically write the
global result of all these gravitational interactions as a modified Poisson equation

∇2φ = ρI(φ, ρM) , (1.1)

where ρI identifies an effective matter source depending on the real matter density but
also on the geometry of the universe itself (here represented only by the scalar poten-
tial)3. Thinking in this way, it is not difficult to reach the conclusion (as Einstein did)
that Einstein equations should be modified to deal with cosmological situations. These
modified equations should contain cosmological solutions (homogeneous and isotropic)
that are static. The easiest modification one can think of that do the job is one in which
the global effects of matter are separated into a normal contribution and a cosmologi-
cal contribution equilibrating each other – this is precisely Einstein universe. However,
there is no reason to adopt the much stronger assumption that the cosmological term is
constant.

The possible existence of a varying cosmological term was considered as early as in
1933 by M. Bronstein [12] (see for example [13] and [14] for reviews of the history of
the cosmological term). Nowadays there are many models incorporating a varying cos-
mological term (mainly under the names of quintessence [15] and dark energy [16]; see
also [13, 14] and references therein for a summary of different models). Generically, the
idea has been that since inflation (or some other phase transitions in the early universe)
the contribution of an effective cosmological term has been progressively disappearing,
leaving a small or zero contribution at present. The cosmological contribution has been
usually modelled as an independent field. Here we are going to treat the cosmological
contribution as completely tied up with the normal matter content.

In the following we will propose a simple heuristic modification of the cosmological
equations of motion incorporating an equilibrating, and so variable, cosmological term.
Adjustment mechanisms have been explored before (see [17] for an updated discussion).
The difference here is that instead of describing a specific and detailed adjusting mech-
anism an see what happens, we take as an starting hypothesis the very existence of an
equilibrating mechanism. The equations that we propose to implement this mechanism
are arguable the simplest one can think of, and are enough to illustrate the main features
of these type of models.

(Minkowskian) notion of mass.
3Einstein contemplated a simple modification of the Poisson equation in the form of the so-called

Seeliger equation ∇2φ = −Λφ + ρM .
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2 The model

Let us assume that it exists a state of stable internal (by definition there is nothing outside
the Universe) equilibrium for the universe on the overall . To describe the situation let
us separate the total effect of matter on the geometry as a normal contribution and a
so-called vacuum contribution. For concreteness and simplicity let us choose an equation
of state for matter of the form pM = (γ − 1)ρM with γ ∈ (4/3, 1). The equation of state
for the vacuum energy is pV = −ρV .

The Friedman equation for a universe with closed spherical spacial sections is
(

ȧ

a

)2

= −
1

a2
+

8πG

3
ρT , (2.1)

where ρT contains the matter density and the vacuum energy contribution: ρT = ρM +ρV .
The equation for the acceleration of the scale factor is

ä

a
= −

4πG

3
(ρT + 3pT ) . (2.2)

The Einstein static universe is obtained when

(ρT + 3pT ) = 0 ,
8πG

3
a2ρT = 1 (2.3)

and a = as equal constant. In this case

ρV =
3γ − 2

2
ρM and a−2

s =
8πG

3

3γ

2
ρM . (2.4)

Now let us eliminate the condition ρV :=constant. This condition is obtained if one
requires that the conservation of the energy-momentum tensor applies separately to the
normal-matter and vacuum-energy components. When this is not the case, from the total
conservation equation

dρT

da
= −

3

a
(ρT + pT ) , (2.5)

one obtains

dρV

da
= −

(

dρM

da
+

3γ

a
ρM

)

. (2.6)

This equation and Friedman’s equation have to be supplemented with a third equation
to obtain a closed set of equations. The third equation will be the one that regulates the
transference of energy between the normal and the vacuum energy components. A simple
choice one can make is

d

da

[

ρV −
(3γ − 2)

2
ρM

]

= −
1

τ
ρV . (2.7)

We will show that this nicely incorporates the idea that the universe has the tendency
to go towards the equilibrium point4. The constant parameter τ can be interpreted as a

4 This equation is in conceptual tune with what happen in a quantum field theory over a curved
background: Acceleration of the universe has the tendency to creating particles from the vacuum, lowering
through back-reaction the vacuum energy density. Combining the equation of conservation (2.6) and the
equation for interchange (2.7), one obtains dρM

da
= − 2

a
ρM + 2

3γ
1

τ
ρV . The first term represents an effective

dilution of ρM due to the expansion and the second term could be interpreted as an increase of the
matter density owing to particle creation from the vacuum. However, the similarity is just conceptual,
no quantitative.
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relaxation time and sets the strength of the tendency towards the equilibrium: As smaller
is τ the greater is this tendency. At this stage, we don’t have a fundamental theory from
which to calculate the value of τ , we just take it as a parameter of the model.

Let us now first solve equations (2.6) and (2.7). The general solution will be ex-
pressed in terms of two arbitrary constants C1 and C2. Once found the functions ρV =
ρV (a, C1, C2) and ρM = ρM (a, C1, C2) we can plague them into the Friedman equation to
solve for the scale factor. Friedman’s equation, (2.1), can be written as

1

2
ȧ2 + VNewt−eff(a) = 0 , (2.8)

with

VNew−eff(a) ≡
1

2

{

1 −
8πG

3
a2[ρV (a) + ρM(a)]

}

. (2.9)

In this form it is very easy to extract its physical information.
So, from equations (2.6) and (2.7) we obtain a second order equation for ρM :

d2ρM

da2
+

(

2

a
+

2

3γ

1

τ

)

dρM

da
+
(

2

aτ
−

2

a2

)

ρM . (2.10)

The general solution of this second order differential equation is

ρM(a) = C1a
−1 exp

(

−
1

3γ

a

τ

)

M3γ−1,3/2

(

2

3γ

a

τ

)

+C2a
−1 exp

(

−
1

3γ

a

τ

)

W3γ−1,3/2

(

2

3γ

a

τ

)

, (2.11)

where Mκ,λ and Wκ,λ identify Whittaker’s functions [18]. Now one can also solve for
ρV (a):

ρV =
3γ

2
τ

dρM

da
+ 3γ

τ

a
ρM . (2.12)

A remarkable fact to notice is that although there are two independent solutions to pre-
vious equation, only M3γ−1,3/2 is different from zero for a > 0. Therefore concerning the
behaviour of the different magnitudes for positive a, only the value of C1 is relevant.

In figure 1 we have plotted a generic behaviour of ρV (a), ρM(a) and VNew−eff(a). We
have chosen C1 = 100, C2 = 0, γ = 1.25, τ = 100 and 8πG/3 = 0.0002 for graphical
clarity. The red dashed line, the green bold line and the blue bold line represent ρV , ρM

and VNew−eff respectively. We clearly observe that the previous set of equations give place
generically to oscillating universes between a minimum and a maximum size [remember
that the Newtonian effective energy is equal zero; see (2.8)]. The Einstein solution is a
fine-tuned solution corresponding to the situation in which the bottom of the potential
is precisely at the zero-energy level. However, within this framework Einstein’s solution
would be stable5. The generic cosmological solutions found are such that at a large value
of the vacuum energy density the universe is small but not singular; at that point the

5G. Volovik and the author already pointed out this possibility in a scenario based on emergent gravity
under the influence of an external thermal bath [19].
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Figure 1: Plots of ρV (a), ρM(a) and VNewt−eff(a) showing a generic solution of our set
of cosmological equations. We have used γ = 1.25 C1 = 100, C2 = 0, τ = 100 and
8πG/3 = 0.0002 for graphical clarity.

matter energy density is small. Then, as the universe expands, the vacuum energy density
rapidly decreases while the matter energy density increases. In this process the matter
energy density becomes sufficiently large so that, at some maximum size, the system stops
its expansion being driven to re-collapse towards the original point. Then, the cycle is
repeated over and over. Oscillating models caused by a cosmological term diminishing
with the expansion have been consider before in [20]. In that paper instead of introducing
as here an equation of transference of energy, they analyse different functional forms for
the dependence of ρV with the scale factor.

The model has only two adjustable parameters: The time relaxation parameter τ and
the initial value of ρM . The initial value of ρV is then also fixed. This reflects the fact
that we are really not dealing with two matter sources but with a single one effectively
described as separated into two terms.

3 Cosmological observations

The presented oscillating universe only considers the homogeneous and isotropic degree
of freedom of the gravitational and matter sectors. In a more realistic setting, the energy
on the homogeneous and isotropic mode would decrease owing to the transfer of energy
to inhomogeneous modes. Then, one can define an entropic birth for the universe as the
starting point of a cycle at which all of the inhomogeneous modes were unexcited. In terms
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of the cosmological time, the universe has not a beginning; instead the universe is past
eternal. Therefore, if one takes any snapshot in the evolution having some inhomogeneities
present and, then, evolve backwards in time, one will always find a cosmological time in
the past at which all the inhomogeneous modes were unexcited. This “initial” cycle
would have the largest amplitude (that is, the largest difference between amin and amax).
Then, each new cycle would have a smaller amplitude than the previous. Eventually, the
homogeneous mode of the universe would settle down at the Einstein equilibrium point.

The validity of a cosmological model can only be assessed by the observations. Thus,
this model will have to surpass several tests in the future. At this stage I can only say
that it has very appealing features including its falsifiability:

• It is reasonable to think that we are already leaving in a world of low-energies (all
the phenomena around us happen at energy scales much lower that Planck scale).
It is also reasonable to think that we are neither almost at the equilibrium point (in
the cosmological sense) nor close to the initial state. In terms of entropy, there is
already bast amounts of entropy in the universe, but clearly, we are very far from a
maximal entropy state. Therefore, starting from this observation our model tell us
that the values of ρM and ρV should be of the same order. This so-called coincidence
is something that we observe and has been part of the motivation for the present
analysis.

• Taking the currently accepted values of ΩΛ ∼ 0.7 and ΩM ∼ 0.3 [21], our model
predicts that the acceleration that we observe should be decreasing with time at
present and so be bigger in the past. The fitting of the supernova data at high red-
shifts seems to provide an indication of the contrary [22]. The acceleration appears
as nonexistent in the past, giving support to models of dark energy as the Chaplygin
gas (see for example [23]). However, by making global comparisons between differ-
ent cosmological models, other authors argue that it is still impossible to discern,
for example, between a cosmological constant and varying dark energy [24].

Another prediction of this model is that the normal-matter energy density at present
and at the recent past would have to have a different evolution that in standard
cosmological models. For a dust dominated universe (γ = 1) one only has to compare
the standard and modified behaviours:

dρM

da
= −

3

a
ρM versus

dρM

da
= −

2

a
ρM +

2

3γ

1

τ
ρV . (3.1)

• The “close to Big Bang” origin of the universe in our model allows for incorporating
most of the predictive power of this paradigm. However one has to bear in mind
that any realistic calculation within our model will have to take into account two
new factors: i) Since its entropic birth, the universe could have passed through a few
entire cycles before entering in its current expansive phase; ii) In each new cycle, the
maximum value of the acceleration attained, proportional to ρV − [(3γ − 2)/2]ρM ,
would be smaller.

For example, the diminishing of the duration of a single phase of nucleosynthesis,
owing to the background acceleration predicted for that period, could be compen-
sated with the plausible existence of a few cycles reaching large enough temperatures
for nuclear reactions to take place.
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• In this model the time elapsed since the entropic birth of the universe (Big Bang-
like) would be much larger than in standard cosmological models. We have much
more time to produce structures in the universe, something that has always been
problematic in standard cosmology.

• This model does not have the so-called horizon problem of standard cosmology as
there is not a “beginning of time” event. Therefore, radiation could have enough
time to thermalize in very large scales. If the current cycle would have started
at a temperature smaller than Trecombination, then, the size of the inhomogeneities
found in the cosmic microwave radiation would not directly constraint the size of
the inhomogeneities in the barionic matter sector in recent times.

• Within this positive curvature model, the found values ΩΛ + ΩM ∼ 1 and H−1

0 ∼

14.000 Gyears would be just telling us that the universe is very large, R0 ≥ 100 Gpc
with R0 its current physical radius, so locally it would be almost flat.

Further checking of the compatibility of this cosmological model with actual observa-
tions will be the subject of future work.
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