410 research outputs found

    A Vegetation and Fire History of Lake Titicaca since the Last Glacial Maximum

    Get PDF
    Fine-resolution fossil pollen and charcoal analyses reconstruct a vegetation and fire history in the area surrounding Lake Titicaca (3810 m, Peru/Bolivia) since ca. 27,500 cal yr BP (hereafter BP). Time control was based on 26 accelerator mass spectrometer (AMS) radiocarbon dates. Seventeen AMS dates and 155 pollen and charcoal samples between ca. 17,500 BP and ca. 3,100 BP allow a centennial-scale reconstruction of deglacial and early- to mid-Holocene events. Local and regional fire signals were based on the separation of two charcoal size fractions, ≄180 ÎŒm and 179–65 ÎŒm. Charcoal abundance correlated closely with the proportion of woody taxa present in the pollen spectra. Little or no pollen was detected in the sedimentary record prior to ca. 21,000 BP. Very cold climatic conditions prevailed, with temperatures suggested to be at least 5–8°C cooler than present. Increases in pollen concentration suggest initial warming at ca. 21,000 BP with a more significant transition toward deglaciation ca. 17,700 BP. Between 17,700 BP and 13,700 BP, puna brava is progressively replaced by puna and sub-puna elements. The most significant changes between the Pleistocene and the Holocene floras were largely complete by 13,700 BP, providing an effective onset of near-modern conditions markedly earlier than in other Andean records. Fire first occurs in the catchment at ca. 17,700 BP and becomes progressively more important as fuel loads increase. No evidence is found of a rapid cooling and warming coincident with the Younger Dryas chron. A dry event between ca. 9,000 BP and 3,100 BP, with a peak between 6,000 and 4,000 BP, is inferred from changes in the composition of aquatics, and the marsh community as pollen of Cyperaceae is replaced by Poaceae, Apiaceae, Plantago and the shrub Polylepis. Human disturbance of the landscape is evident in the pollen spectra after ca. 3,100 BP with the appearance of weed species

    Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago

    Get PDF
    A 90,000-yr record of environmental change before 18,000 cal yr B.P. has been constructed using pollen analyses from a sediment core obtained from Salar de Uyuni (3653 m above sea level) on the Bolivian Altiplano. The sequence consists of alternating mud and salt, which reflect shifts between wet and dry periods. Low abundances of aquatic species between 108,000 and 50,000 yr ago (such as Myriophyllum and IsoĂ«tes) and marked fluctuations in Pediastrum suggest generally dry conditions dominated by saltpans. Between 50,000 yr ago and 36,000 cal yr B.P., lacustrine sediments become increasingly dominant. The transition to the formation of paleolake “Minchin” begins with marked rises in IsoĂ«tes and Myriophyllum, suggesting a lake of moderate depth. Similarly, between 36,000 and 26,000 cal yr B.P., the transition to paleolake Tauca is also initiated by rises in IsoĂ«tes and Myriophyllum; the sustained presence of IsoĂ«tes indicates the development of flooded littoral communities associated with a lake maintained at a higher water level. Polylepis tarapacana-dominated communities were probably an important component of the Altiplano terrestrial vegetation during much of the Last Glacial Maximum (LGM) and previous wet phases

    Long-term ecological legacies in western Amazonia

    Get PDF
    M.B.B would like to acknowledge funding from the National Science Foundation (grant nos. EAR1338694 and BCS0926973), the Belmont Forum, and the National Aeronautics and Space Administration (grant no. NNX14AD31G). C.N.H.M would like to acknowledge funding from the European Research Council (ERC 2019 StG 853394). C.N.H.M and M.F.R would like to acknowledge funding from the Netherlands Organisation for Scientific Research (ALWOP.322). S.N.H, M.P, and Jo.V performed this research as a part of the BSc research program of the Institute for Biodiversity and Ecosystem Dynamics at the University of Amsterdam.1. Modifications of Amazonian forests by pre‐Columbian peoples are thought to have left ecological legacies that have persisted to the modern day. Most Amazonian palaeoecological records do not, however, provide the required temporal resolution to document the nuanced changes of pre‐Columbian disturbance or post‐disturbance succession and recovery, making it difficult to detect any direct, or indirect, ecological legacies on tree species. 2. Here, we investigate the fossil pollen, phytolith and charcoal history of Lake Kumpaka, Ecuador, during the last 2,415 years in c. 3–50 year time intervals to assess ecological legacies resulting from pre‐Columbian forest modification, disturbance, cultivation and fire usage. 3. Two cycles of pre‐Columbian cultivation (one including slash‐and‐burn cultivation, the other including slash‐and‐mulch cultivation) were documented in the record around 2150–1430 cal. year BP and 1250–680 cal. year BP, with following post‐disturbance succession dynamics. Modern disturbance was documented after c. 10 cal. year BP. The modern disturbance produced a plant composition unlike those of the two past disturbances, as fire frequencies reached their peak in the 2,415‐year record. The disturbance periods varied in intensity and duration, while the overturn of taxa following a disturbance lasted for hundreds of years. The recovery periods following pre‐Columbian disturbance shared some similar patterns of early succession, but the longer‐term recovery patterns differed. 4. Synthesis. The trajectories of change after a cessation of cultivation can be anticipated to differ depending on the intensity, scale, duration and manner of the past disturbance. In the Kumpaka record, no evidence of persistent enrichment or depletion of intentionally altered taxa (i.e. direct legacy effects) was found but indirect legacy effects, however, were documented and have persisted to the modern day. These findings highlight the strengths of using empirical data to reconstruct past change rather than relying solely on modern plant populations to infer past human management and ecological legacies, and challenge some of the current hypotheses involving the persistence of pre‐Columbian legacies on modern plant populations.Publisher PDFPeer reviewe

    BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction

    Get PDF
    We describe the Bayesian user-friendly model for palaeo-environmental reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring ~2 s to build a 100-taxon model from a 100-site training set on a standard personal computer. We apply the model’s probabilistic framework to generate thousands of artificial training sets under ideal assumptions.We then use these to demonstrate the sensitivity of reconstructions to the characteristics of the training set, considering assemblage richness, taxon tolerances, and the number of training sites. We find that a useful guideline for the size of a training set is to provide, on average, at least 10 samples of each taxon. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. An identically configured model is used in each application, the only change being the input files that provide the training-set environment and taxon-count data. The performance of BUMPER is shown to be comparable with weighted average partial least squares (WAPLS) in each case. Additional artificial datasets are constructed with similar characteristics to the real data, and these are used to explore the reasons for the differing performances of the different training sets

    Andean drought and glacial retreat tied to Greenland warming during the last glacial period

    Get PDF
    Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale. DO events involved the near-complete disappearance of glaciers below 4700 masl in the eastern Andean cordillera and major reductions in the level of Peru’s second largest lake. Our results reveal the magnitude of the hydroclimatic disruptions in the highest reaches of the Amazon Basin that were caused by a weakening of the SASM during abrupt arctic warming. Accentuated warming in the Arctic could lead to significant reductions in the precipitation-evaporation balance of the southern tropical Andes with deleterious effects on this densely populated region of South America

    Andean drought and glacial retreat tied to Greenland warming during the last glacial period

    Get PDF
    Abrupt warming events recorded in Greenland ice cores known as Dansgaard-Oeschger (DO) interstadials are linked to changes in tropical circulation during the last glacial cycle. Corresponding variations in South American summer monsoon (SASM) strength are documented, most commonly, in isotopic records from speleothems, but less is known about how these changes affected precipitation and Andean glacier mass balance. Here we present a sediment record spanning the last ~50 ka from Lake Junín (Peru) in the tropical Andes that has sufficient chronologic precision to document abrupt climatic events on a centennial-millennial time scale. DO events involved the near-complete disappearance of glaciers below 4700 masl in the eastern Andean cordillera and major reductions in the level of Peru’s second largest lake. Our results reveal the magnitude of the hydroclimatic disruptions in the highest reaches of the Amazon Basin that were caused by a weakening of the SASM during abrupt arctic warming. Accentuated warming in the Arctic could lead to significant reductions in the precipitation-evaporation balance of the southern tropical Andes with deleterious effects on this densely populated region of South America

    Comment on “Persistent effects of pre-Columbian plant domestication on Amazonian forest composition”

    Full text link
    Levis et al. (Research Articles, 3 March 2017, p. 925) concluded that pre-Columbian tree domestication has shaped present-day Amazonian forest composition.The study, however, downplays five centuries of human influence following European arrival to the Americas.We show that the effects of post-Columbian activities in Amazonia are likely to have played a larger role than pre-Columbian ones in shaping the observed floristic patterns.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138830/1/eaan8347.full.pdf85Description of eaan8347.full.pdf : main articl

    Updated site compilation of the Latin American Pollen Database

    Get PDF
    Flantua, Suzette G A et al.The updated inventory of the Latin American Pollen Database (LAPD) offers a wide range of new insights. This paper presents a systematic compilation of palynological research in Latin America. A comprehensive inventory of publications in peer-reviewed and grey literature shows a major expansion of studies over the last decades. The inventory includes 1379 cores and sections with paleoecological data and more than 4800 modern samples from throughout the continent. Through the years, pollen datasets extend over increasing spans of time and show improved taxonomic and temporal resolution. Currently, these datasets are from 12 modern biomes and 30 countries, covering an altitudinal range of 0 to 6300. m asl. The most densely sampled regions are the Colombian Andes, the southeast coast of Brazil, and Patagonia. Underrepresented biomes are the warm temperate mixed forest (3%), dry forests (3%), and warm temperate rainforest (1%); whereas steppe, tropical rainforest, and cool grass shrublands, such as the pĂĄramos, are generally well represented (all >. 17%). There are 126 records that span the late Pleistocene to the Last Glacial Maximum transition (21,000. cal. yr BP), and >. 20% of the records cover the Younger Dryas interval and the Pleistocene/Holocene transition. Reanalysis of numerous sites using multiproxy tools emphasize the informative value of this approach in paleoenvironmental reconstruction. We make suggestions for several pollen sites and regions to be visited again; similarly we identify some key research questions that have yet to be answered. The updated LAPD now provides the platform to support an exciting new phase of global palynological research in which multi-site data are being integrated to address current cutting-edge research questions. The LAPD compilation of sites and the literature database will be available through the Neotoma Paleoecology Database website and a new LAPD website by the end of 2015We thank the Netherlands Organization for Scientific Research (NWO, grant 2012/13248/ALW) for financial support of this project.Peer reviewe
    • 

    corecore