17 research outputs found

    Comparative whole genome sequencing reveals phenotypic tRNA gene duplication in spontaneous Schizosaccharomyces pombe La mutants

    Get PDF
    We used a genetic screen based on tRNA-mediated suppression (TMS) in a Schizosaccharomyces pombe La protein (Sla1p) mutant. Suppressor pre-tRNASerUCA-C47:6U with a debilitating substitution in its variable arm fails to produce tRNA in a sla1-rrm mutant deficient for RNA chaperone-like activity. The parent strain and spontaneous mutant were analyzed using Solexa sequencing. One synonymous single-nucleotide polymorphism (SNP), unrelated to the phenotype, was identified. Further sequence analyses found a duplication of the tRNASerUCA-C47:6U gene, which was shown to cause the phenotype. Ninety percent of 28 isolated mutants contain duplicated tRNASerUCA-C47:6U genes. The tRNA gene duplication led to a disproportionately large increase in tRNASerUCA-C47:6U levels in sla1-rrm but not sla1-null cells, consistent with non-specific low-affinity interactions contributing to the RNA chaperone-like activity of La, similar to other RNA chaperones. Our analysis also identified 24 SNPs between ours and S. pombe 972h- strain yFS101 that was recently sequenced using Solexa. By including mitochondrial (mt) DNA in our analysis, overall coverage increased from 52% to 96%. mtDNA from our strain and yFS101 shared 14 mtSNPs relative to a ‘reference’ mtDNA, providing the first identification of these S. pombe mtDNA discrepancies. Thus, strain-specific and spontaneous phenotypic mutations can be mapped in S. pombe by Solexa sequencing

    The Yeast La Related Protein Slf1p Is a Key Activator of Translation during the Oxidative Stress Response

    Get PDF
    The mechanisms by which RNA-binding proteins control the translation of subsets of mRNAs are not yet clear. Slf1p and Sro9p are atypical-La motif containing proteins which are members of a superfamily of RNA-binding proteins conserved in eukaryotes. RIP-Seq analysis of these two yeast proteins identified overlapping and distinct sets of mRNA targets, including highly translated mRNAs such as those encoding ribosomal proteins. In paralell, transcriptome analysis of slf1Δ and sro9Δ mutant strains indicated altered gene expression in similar functional classes of mRNAs following loss of each factor. The loss of SLF1 had a greater impact on the transcriptome, and in particular, revealed changes in genes involved in the oxidative stress response. slf1Δ cells are more sensitive to oxidants and RIP-Seq analysis of oxidatively stressed cells enriched Slf1p targets encoding antioxidants and other proteins required for oxidant tolerance. To quantify these effects at the protein level, we used label-free mass spectrometry to compare the proteomes of wild-type and slf1Δ strains following oxidative stress. This analysis identified several proteins which are normally induced in response to hydrogen peroxide, but where this increase is attenuated in the slf1Δ mutant. Importantly, a significant number of the mRNAs encoding these targets were also identified as Slf1p-mRNA targets. We show that Slf1p remains associated with the few translating ribosomes following hydrogen peroxide stress and that Slf1p co-immunoprecipitates ribosomes and members of the eIF4E/eIF4G/Pab1p ‘closed loop’ complex suggesting that Slf1p interacts with actively translated mRNAs following stress. Finally, mutational analysis of SLF1 revealed a novel ribosome interacting domain in Slf1p, independent of its RNA binding La-motif. Together, our results indicate that Slf1p mediates a translational response to oxidative stress via mRNA-specific translational control

    The A2453-C2499 wobble base pair in Escherichia coli 23S ribosomal RNA is responsible for pH sensitivity of the peptidyltransferase active site conformation

    No full text
    Peptide bond formation, catalyzed by the ribosomal peptidyltransferase, has long been known to be sensitive to monovalent cation concentrations and pH. More recently, we and others have shown that residue A2451 in the peptidyltransferase center of the Escherichia coli 50S ribosomal subunit changes conformation in response to alterations in pH, depending on ionic conditions and temperature. Two wobble pairs, A2453-C2499 and A2450-C2063, have been proposed as potential candidates to convey pH-dependent flexibility to the peptidyltransferase center. Each is presumed to possess a near-neutral pK(a), and both lie in proximity to A2451. We show through mutagenesis and chemical probing that the identity of the A2453-C2499 base pair, but not the A2450-C2063 base pair, is critical for the pH-dependent structural rearrangement of A2451. We conclude that, while the A2453-C2499 base pair may be important for maintaining the structure of the active site in the E.coli peptidyltransferase center, its lack of conservation makes it, and consequently its near-neutral pK(a), unlikely to contribute to function during peptide bond formation

    RNA Chaperone Activity of Human La Protein Is Mediated by Variant RNA Recognition Motif*

    No full text
    La proteins are conserved factors in eukaryotes that bind and protect the 3′ trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3′OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3′OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets

    Cellular La Protein Shields Nonsegmented Negative-Strand RNA Viral Leader RNA from RIG-I and Enhances Virus Growth by Diverse Mechanisms▿

    No full text
    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism

    Heterogeneity in leukemia cells that escape drug-induced senescence-like state

    No full text
    Abstract Erythropoietin (EPO) suppresses drug-induced apoptosis in EPO-receptor-positive leukemia cells and allows cells to persist after drug treatment by promoting cellular senescence. Importantly a small proportion of senescent cells can re-enter the cell cycle and resume proliferation after drug treatment, resulting in disease recurrence/persistence. Using a single-cell assay to track individual cells that exit a drug-induced senescence-like state, we show that cells exhibit asynchronous exit from a senescent-like state, and display different rates of proliferation. Escaped cells retain sensitivity to drug treatment, but display inter-clonal variability. We also find heterogeneity in gene expression with some of the escaped clones retaining senescence-associated gene expression. Senescent leukemia cells exhibit changes in gene expression that affect metabolism and senescence-associated secretory phenotype (SASP)-related genes. Herein, we generate a senescence gene signature and show that this signature is a prognostic marker of worse overall survival in AML and multiple other cancers. A portion of senescent leukemia cells depend on lysosome activity; chloroquine, an inhibitor of lysosome activity, promotes senolysis of some senescent leukemia cells. Our study indicates that the serious risks associated with the use of erythropoietin-stimulating agents (ESAs) in anemic cancer patients may be attributed to their ability to promote drug-tolerant cancer cells through the senescence program

    Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi

    No full text
    Direct analysis of microbial cocultures grown on agar media by desorption electrospray ionization mass spectrometry (DESI-MS) is quite challenging. Due to the high gas pressure upon impact with the surface, the desorption mechanism does not allow direct imaging of soft or irregular surfaces. The divots in the agar, created by the high-pressure gas and spray, dramatically change the geometry of the system decreasing the intensity of the signal. In order to overcome this limitation, an imprinting step, in which the chemicals are initially transferred to flat hard surfaces, was coupled to DESI-MS and applied for the first time to fungal cocultures. Note that fungal cocultures are often disadvantageous in direct imaging mass spectrometry. Agar plates of fungi present a complex topography due to the simultaneous presence of dynamic mycelia and spores. One of the most devastating diseases of cocoa trees is caused by fungal phytopathogen Moniliophthora roreri. Strategies for pest management include the application of endophytic fungi, such as Trichoderma harzianum, that act as biocontrol agents by antagonizing M. roreri. However, the complex chemical communication underlying the basis for this phytopathogen-dependent biocontrol is still unknown. In this study, we investigated the metabolic exchange that takes place during the antagonistic interaction between M. roreri and T. harzianum. Using imprint-DESI-MS imaging we annotated the secondary metabolites released when T. harzianum and M. roreri were cultured in isolation and compared these to those produced after 3 weeks of coculture. We identified and localized four phytopathogen-dependent secondary metabolites, including T39 butenolide, harzianolide, and sorbicillinol. In order to verify the reliability of the imprint-DESI-MS imaging data and evaluate the capability of tape imprints to extract fungal metabolites while maintaining their localization, six representative plugs along the entire M. roreri/T. harzianum coculture plate were removed, weighed, extracted, and analyzed by liquid chromatography–high-resolution mass spectrometry (LC–HRMS). Our results not only provide a better understanding of M. roreri-dependent metabolic induction in T. harzianum, but may seed novel directions for the advancement of phytopathogen-dependent biocontrol, including the generation of optimized Trichoderma strains against M. roreri, new biopesticides, and biofertilizers
    corecore