182 research outputs found

    Macroscopic urban dynamics: Analytical and numerical comparisons of existing models

    Get PDF
    In this paper we compare a single reservoir model and a trip-based model under piecewise linear MFD and a piecewise constant demand. These assumptions allow to establish the exact solution of the accumulation-based model, and continuous approximations of the trip-based model at any order using Taylor series

    Backward-wave regime and negative refraction in chiral composites

    Full text link
    Possibilities to realize a negative refraction in chiral composites in in dual-phase mixtures of chiral and dipole particles is studied. It is shown that because of strong resonant interaction between chiral particles (helixes) and dipoles, there is a stop band in the frequency area where the backward-wave regime is expected. The negative refraction can occur near the resonant frequency of chiral particles. Resonant chiral composites may offer a root to realization of negative-refraction effect and superlenses in the optical region

    Symmetry and reciprocity constraints on diffraction by gratings of quasi-planar particles

    Full text link
    Symmetry and reciprocity constraints on polarization state of the field diffracted by gratings of quasi-planar particles are considered. It is shown that the optical activity effects observed recently in arrays of quasi-planar plasmonic particles on a dielectric substrate are due to the reflection of the field at the air-dielectric slab interface and are proportional to this reflection coefficient.Comment: 11 pages, 3 figures, 12 references; minor corrections for better appearanc

    Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients

    Full text link
    We analyze the reflection and transmission coefficients calculated from transfer matrix simulations on finite lenghts of electromagnetic metamaterials, to determine the effective permittivity and permeability. We perform this analysis on structures composed of periodic arrangements of wires, split ring resonators (SRRs) and both wires and SRRs. We find the recovered frequency-dependent permittivity and permeability are entirely consistent with analytic expressions predicted by effective medium arguments. Of particular relevance are that a wire medium exhibits a frequency region in which the real part of permittivity is negative, and SRRs produce a frequency region in which the real part of permeability is negative. In the combination structure, at frequencies where both the recovered real part of permittivity and permeability are simultaneously negative, the real part of the index-of-refraction is found also to be unambigously negative.Comment: *.pdf file, 5 figure

    Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures

    Full text link
    The combination of large thickness (>3>3 μ\mum), large--area uniformity (75 mm diameter), high growth rate (up to 0.4 μ\mum/min) in assemblies of complex--shaped nanowires on lithographically defined patterns has been achieved for the first time. The nanoscale and the microscale have thus been blended together in sculptured thin films with transverse architectures. SiOx_x (x2x\approx 2) nanowires were grown by electron--beam evaporation onto silicon substrates both with and without photoresist lines (1--D arrays) and checkerboard (2--D arrays) patterns. Atomic self--shadowing due to oblique--angle deposition enables the nanowires to grow continuously, to change direction abruptly, and to maintain constant cross--sectional diameter. The selective growth of nanowire assemblies on the top surfaces of both 1--D and 2--D arrays can be understood and predicted using simple geometrical shadowing equations.Comment: 17 pages, 9 figure

    Optomagnetic composite medium with conducting nanoelements

    Full text link
    A new type of metal-dielectric composites has been proposed that is characterised by a resonance-like behaviour of the effective permeability in the infrared and visible spectral ranges. This material can be referred to as optomagnetic medium. The analytical formalism developed is based on solving the scattering problem for considered inclusions with impedance boundary condition, which yields the current and charge distributions within the inclusions. The presence of the effective magnetic permeability and its resonant properties lead to novel optical effects and open new possible applications.Comment: 48 pages, 13 figures. accepted to Phys. Rev. B; to appear vol. 66, 200

    Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland

    No full text
    International audienceQuestionA better understanding of the response of Sphagnum mosses and associated vascular plants to climate warming is relevant for predicting the carbon balance of peatlands in a warmer world. Open-top chambers (OTCs) have been used to investigate the effect on soil biogeochemical processes in peatlands, but little information is available on the effects of OTCs on microclimate conditions and the associated response of the plant community. We aimed to understand how simulated warming and differences in soil moisture affect plant species cover.LocationA Sphagnum-dominated peatlands in French Jura.MethodsWe used OTCs to measure the effect of a near-ground temperature increase (+1.5 °C on average) on vegetation dynamics over five growing seasons (2008–2012) in a Sphagnum-dominated peatland, in two adjacent microhabitats with different hydrological conditions – wet and dry. Microclimatic conditions and plant species abundance were monitored at peak biomass in years 1, 2, 3 and 5 and monthly during the plant growing season in year 5.ResultsThe response to warming differed between vascular plants and bryophytes, as well as among species within these groups, and also varied in relation to soil moisture. Andromeda polifolia abundance responded positively to warming, while Vaccinium oxycoccus responded negatively, and Eriophorum vaginatum showed a high resistance.ConclusionDepth of rooting of vascular plants appeared to control the response in plant abundance, while moss abundance depended on various other interacting factors, such as shading by the vascular plant community, precipitation and soil moisture

    Evolution of Gaussian wave packets in capillary jets

    Get PDF
    A temporal analysis of the evolution of Gaussian wave packets in cylindrical capillary jets is presented through both a linear two-mode formulation and a one-dimensional nonlinear numerical scheme. These analyses are normally applicable to arbitrary initial conditions but our study focuses on pure-impulsive ones. Linear and nonlinear findings give consistent results in the stages for which the linear theory is valid. The inverse Fourier transforms representing the formal linear solution for the jet shape is both numerically evaluated and approximated by closed formulas. After a transient, these formulas predict an almost Gaussian-shape deformation with (i) a progressive drift of the carrier wave number to that given by the maximum of the Rayleigh dispersion relation, (ii) a progressive increase of its bell width, and (iii) a quasi-exponential growth of its amplitude. These parameters agree with those extracted from the fittings of Gaussian wave packets to the numerical simulations. Experimental results are also reported on near-Gaussian pulses perturbing the exit velocity of a 2 mm diameter water jet. The possibility of controlling the breakup location along the jet and other features, such as pinch-off simultaneity, are demonstrated

    Characterizing the pathotype of neonatal meningitis causing <i>Escherichia coli</i> (NMEC)

    Get PDF
    Background Neonatal meningitis-causing Escherichia coli (NMEC) is the predominant Gram-negative bacterial pathogen associated with meningitis in newborn infants. High levels of heterogeneity and diversity have been observed in the repertoire of virulence traits and other characteristics among strains of NMEC making it difficult to define the NMEC pathotype. The objective of the present study was to identify genotypic and phenotypic characteristics of NMEC that can be used to distinguish them from commensal E. coli. Methods A total of 53 isolates of NMEC obtained from neonates with meningitis and 48 isolates of fecal E. coli obtained from healthy individuals (HFEC) were comparatively evaluated using five phenotypic (serotyping, serum bactericidal assay, biofilm assay, antimicorbial susceptibility testing, and in vitro cell invasion assay) and three genotypic (phylogrouping, virulence genotyping, and pulsed-field gel electrophoresis) methods. Results A majority (67.92 %) of NMEC belonged to B2 phylogenetic group whereas 59 % of HFEC belonged to groups A and D. Serotyping revealed that the most common O and H types present in NMEC tested were O1 (15 %), O8 (11.3 %), O18 (13.2 %), and H7 (25.3 %). In contrast, none of the HFEC tested belonged to O1 or O18 serogroups. The most common serogroup identified in HFEC was O8 (6.25 %). The virulence genotyping reflected that more than 70 % of NMEC carried kpsII, K1, neuC, iucC, sitA, and vat genes with only less than 27 % of HFEC possessing these genes. All NMEC and 79 % of HFEC tested were able to invade human cerebral microvascular endothelial cells. No statistically significant difference was observed in the serum resistance phenotype between NMEC and HFEC. The NMEC strains demonstrated a greater ability to form biofilms in Luria Bertani broth medium than did HFEC (79.2 % vs 39.9 %). Conclusion The results of our study demonstrated that virulence genotyping and phylogrouping may assist in defining the potential NMEC pathotype

    The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe

    Get PDF
    The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios
    corecore