46 research outputs found

    Adherence and future discontinuation of tyrosine kinase inhibitors in chronic phase chronic myeloid leukemia. A patient-based survey on 1133 patients

    Get PDF
    Therapeutic approach for chronic myeloid leukemia (CML) patients has undergone a revolutionary change with the introduction of tyrosine kinase inhibitors, which improved overall survival and quality of life. Optimal therapy adherence has become of paramount importance to maximize the benefits in the long-term outcome. Several evidences have been reported that personal factors, such as social support, psychological and subjective perceptions about the drug used and the future, could influence adherence. We here report the results of a questionnaire specifically designed to evaluate factors influencing adherence and perceptions about the future, distributed to patients during regional Italian meetings. Overall, 1133 patients compiled the questionnaire: median age was 57 years. High rate of adherence was reported, but 42% of interviewed patients admitted that they had occasionally postponed a dose and 58% had discontinued therapy mainly for forgetfulness. The majority of patients discussed with personal physician about the importance of adherence and received sufficient information about illness and treatment, but would like to have discussed more about discomfort, anxiety and fear of the future. Summarizing personal drug compliance and estimating how many days a month, on average, the patients did not take the drug, the majority answered that it was less than 3 days (55%) and only a minority (4%) admitted that it was more than 7 days. Interviewed about discontinuation, 49% of patients answered that wouldn't interrupt because of fear of losing all the results achieved so far. This study suggests a higher level of satisfaction with more information received but the need of improving communication about possible future treatment free remission

    Residual peripheral blood CD26+leukemic stem cells in chronic myeloid leukemia patients during TKI therapy and during treatment-free remission

    Get PDF
    Chronic myeloid leukemia (CML) patients in sustained “deep molecular response” may stop TKI treatment without disease recurrence; however, half of them lose molecular response shortly after TKI withdrawing. Well-defined eligibility criteria to predict a safe discontinuation up-front are still missing. Relapse is probably due to residual quiescent TKI-resistant leukemic stem cells (LSCs) supposedly transcriptionally low/silent and not easily detectable by BCR-ABL1 qRT-PCR. Bone marrow Ph+ CML CD34+/CD38− LSCs were found to specifically co-express CD26 (dipeptidylpeptidase-IV). We explored feasibility of detecting and quantifying CD26+ LSCs by flow cytometry in peripheral blood (PB). Over 400 CML patients (at diagnosis and during/after therapy) entered this cross-sectional study in which CD26 expression was evaluated by a standardized multiparametric flow cytometry analysis on PB CD45+/CD34+/CD38− stem cell population. All 120 CP-CML patients at diagnosis showed measurable PB CD26+ LSCs (median 19.20/μL, range 0.27–698.6). PB CD26+ LSCs were also detectable in 169/236 (71.6%) CP-CML patients in first-line TKI treatment (median 0.014 cells/μL; range 0.0012–0.66) and in 74/112 (66%), additional patients studied on treatment-free remission (TFR) (median 0.015/μL; range 0.006–0.76). Notably, no correlation between BCR-ABL/ABLIS ratio and number of residual LSCs was found both in patients on or off TKIs. This is the first evidence that “circulating” CML LSCs persist in the majority of CML patients in molecular response while on TKI treatment and even after TKI discontinuation. Prospective studies evaluating the dynamics of PB CD26+ LSCs during TKI treatment and the role of a “stem cell response” threshold to achieve and maintain TFR are ongoing

    SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub

    Get PDF
    SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel-Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel- Giedion syndrome caused by SETBP1 mutations.Peer reviewe

    Rotation of nilotinib and imatinib for first-line treatment of chronic phase chronic myeloid leukemia.

    Get PDF
    he introduction of second-generation tyrosine-kinase inhibitors (TKIs) has generated a lively debate on the choice of first-line TKI in chronic phase, chronic myeloid leukemia (CML). Despite the TKIs have different efficacy and toxicity profiles, the planned use of two TKIs has never been investigated. We report on a phase 2 study that was designed to evaluate efficacy and safety of a treatment alternating nilotinib and imatinib, in newly diagnosed BCR-ABL1 positive, chronic phase, CML patients. One hundred twenty-three patients were enrolled. Median age was 56 years. The probabilities of achieving a complete cytogenetic response, a major molecular response, and a deep molecular response (MR 4.0) by 2 years were 93%, 87%, and 61%, respectively. The 5-year overall survival and progression-free survival were 89%. Response rates and survival are in the range of those reported with nilotinib alone. Moreover, we observed a relatively low rate of cardiovascular adverse events (5%). These data show that the different efficacy and toxicity profiles of TKIs could be favorably exploited by alternating their us

    ITALIAN CANCER FIGURES - REPORT 2015: The burden of rare cancers in Italy = I TUMORI IN ITALIA - RAPPORTO 2015: I tumori rari in Italia

    Get PDF
    OBJECTIVES: This collaborative study, based on data collected by the network of Italian Cancer Registries (AIRTUM), describes the burden of rare cancers in Italy. Estimated number of new rare cancer cases yearly diagnosed (incidence), proportion of patients alive after diagnosis (survival), and estimated number of people still alive after a new cancer diagnosis (prevalence) are provided for about 200 different cancer entities. MATERIALS AND METHODS: Data herein presented were provided by AIRTUM population- based cancer registries (CRs), covering nowadays 52% of the Italian population. This monograph uses the AIRTUM database (January 2015), which includes all malignant cancer cases diagnosed between 1976 and 2010. All cases are coded according to the International Classification of Diseases for Oncology (ICD-O-3). Data underwent standard quality checks (described in the AIRTUM data management protocol) and were checked against rare-cancer specific quality indicators proposed and published by RARECARE and HAEMACARE (www.rarecarenet.eu; www.haemacare.eu). The definition and list of rare cancers proposed by the RARECAREnet "Information Network on Rare Cancers" project were adopted: rare cancers are entities (defined as a combination of topographical and morphological codes of the ICD-O-3) having an incidence rate of less than 6 per 100,000 per year in the European population. This monograph presents 198 rare cancers grouped in 14 major groups. Crude incidence rates were estimated as the number of all new cancers occurring in 2000-2010 divided by the overall population at risk, for males and females (also for gender-specific tumours).The proportion of rare cancers out of the total cancers (rare and common) by site was also calculated. Incidence rates by sex and age are reported. The expected number of new cases in 2015 in Italy was estimated assuming the incidence in Italy to be the same as in the AIRTUM area. One- and 5-year relative survival estimates of cases aged 0-99 years diagnosed between 2000 and 2008 in the AIRTUM database, and followed up to 31 December 2009, were calculated using complete cohort survival analysis. To estimate the observed prevalence in Italy, incidence and follow-up data from 11 CRs for the period 1992-2006 were used, with a prevalence index date of 1 January 2007. Observed prevalence in the general population was disentangled by time prior to the reference date (≤2 years, 2-5 years, ≤15 years). To calculate the complete prevalence proportion at 1 January 2007 in Italy, the 15-year observed prevalence was corrected by the completeness index, in order to account for those cancer survivors diagnosed before the cancer registry activity started. The completeness index by cancer and age was obtained by means of statistical regression models, using incidence and survival data available in the European RARECAREnet data. RESULTS: In total, 339,403 tumours were included in the incidence analysis. The annual incidence rate (IR) of all 198 rare cancers in the period 2000-2010 was 147 per 100,000 per year, corresponding to about 89,000 new diagnoses in Italy each year, accounting for 25% of all cancer. Five cancers, rare at European level, were not rare in Italy because their IR was higher than 6 per 100,000; these tumours were: diffuse large B-cell lymphoma and squamous cell carcinoma of larynx (whose IRs in Italy were 7 per 100,000), multiple myeloma (IR: 8 per 100,000), hepatocellular carcinoma (IR: 9 per 100,000) and carcinoma of thyroid gland (IR: 14 per 100,000). Among the remaining 193 rare cancers, more than two thirds (No. 139) had an annual IR <0.5 per 100,000, accounting for about 7,100 new cancers cases; for 25 cancer types, the IR ranged between 0.5 and 1 per 100,000, accounting for about 10,000 new diagnoses; while for 29 cancer types the IR was between 1 and 6 per 100,000, accounting for about 41,000 new cancer cases. Among all rare cancers diagnosed in Italy, 7% were rare haematological diseases (IR: 41 per 100,000), 18% were solid rare cancers. Among the latter, the rare epithelial tumours of the digestive system were the most common (23%, IR: 26 per 100,000), followed by epithelial tumours of head and neck (17%, IR: 19) and rare cancers of the female genital system (17%, IR: 17), endocrine tumours (13% including thyroid carcinomas and less than 1% with an IR of 0.4 excluding thyroid carcinomas), sarcomas (8%, IR: 9 per 100,000), central nervous system tumours and rare epithelial tumours of the thoracic cavity (5%with an IR equal to 6 and 5 per 100,000, respectively). The remaining (rare male genital tumours, IR: 4 per 100,000; tumours of eye, IR: 0.7 per 100,000; neuroendocrine tumours, IR: 4 per 100,000; embryonal tumours, IR: 0.4 per 100,000; rare skin tumours and malignant melanoma of mucosae, IR: 0.8 per 100,000) each constituted <4% of all solid rare cancers. Patients with rare cancers were on average younger than those with common cancers. Essentially, all childhood cancers were rare, while after age 40 years, the common cancers (breast, prostate, colon, rectum, and lung) became increasingly more frequent. For 254,821 rare cancers diagnosed in 2000-2008, 5-year RS was on average 55%, lower than the corresponding figures for patients with common cancers (68%). RS was lower for rare cancers than for common cancers at 1 year and continued to diverge up to 3 years, while the gap remained constant from 3 to 5 years after diagnosis. For rare and common cancers, survival decreased with increasing age. Five-year RS was similar and high for both rare and common cancers up to 54 years; it decreased with age, especially after 54 years, with the elderly (75+ years) having a 37% and 20% lower survival than those aged 55-64 years for rare and common cancers, respectively. We estimated that about 900,000 people were alive in Italy with a previous diagnosis of a rare cancer in 2010 (prevalence). The highest prevalence was observed for rare haematological diseases (278 per 100,000) and rare tumours of the female genital system (265 per 100,000). Very low prevalence (<10 prt 100,000) was observed for rare epithelial skin cancers, for rare epithelial tumours of the digestive system and rare epithelial tumours of the thoracic cavity. COMMENTS: One in four cancers cases diagnosed in Italy is a rare cancer, in agreement with estimates of 24% calculated in Europe overall. In Italy, the group of all rare cancers combined, include 5 cancer types with an IR>6 per 100,000 in Italy, in particular thyroid cancer (IR: 14 per 100,000).The exclusion of thyroid carcinoma from rare cancers reduces the proportion of them in Italy in 2010 to 22%. Differences in incidence across population can be due to the different distribution of risk factors (whether environmental, lifestyle, occupational, or genetic), heterogeneous diagnostic intensity activity, as well as different diagnostic capacity; moreover heterogeneity in accuracy of registration may determine some minor differences in the account of rare cancers. Rare cancers had worse prognosis than common cancers at 1, 3, and 5 years from diagnosis. Differences between rare and common cancers were small 1 year after diagnosis, but survival for rare cancers declined more markedly thereafter, consistent with the idea that treatments for rare cancers are less effective than those for common cancers. However, differences in stage at diagnosis could not be excluded, as 1- and 3-year RS for rare cancers was lower than the corresponding figures for common cancers. Moreover, rare cancers include many cancer entities with a bad prognosis (5-year RS <50%): cancer of head and neck, oesophagus, small intestine, ovary, brain, biliary tract, liver, pleura, multiple myeloma, acute myeloid and lymphatic leukaemia; in contrast, most common cancer cases are breast, prostate, and colorectal cancers, which have a good prognosis. The high prevalence observed for rare haematological diseases and rare tumours of the female genital system is due to their high incidence (the majority of haematological diseases are rare and gynaecological cancers added up to fairly high incidence rates) and relatively good prognosis. The low prevalence of rare epithelial tumours of the digestive system was due to the low survival rates of the majority of tumours included in this group (oesophagus, stomach, small intestine, pancreas, and liver), regardless of the high incidence rate of rare epithelial cancers of these sites. This AIRTUM study confirms that rare cancers are a major public health problem in Italy and provides quantitative estimations, for the first time in Italy, to a problem long known to exist. This monograph provides detailed epidemiologic indicators for almost 200 rare cancers, the majority of which (72%) are very rare (IR<0.5 per 100,000). These data are of major interest for different stakeholders. Health care planners can find useful information herein to properly plan and think of how to reorganise health care services. Researchers now have numbers to design clinical trials considering alternative study designs and statistical approaches. Population-based cancer registries with good quality data are the best source of information to describe the rare cancer burden in a population

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    Long-term outcome of a phase 2 trial with nilotinib 400 mg twice daily in first-line treatment of chronic myeloid leukemia

    Get PDF
    Nilotinib is a second-generation tyrosine kinase inhibitor that has been approved for the first-line treatment of chronic-phase chronic myeloid leukemia, based on the results of a prospective randomized study of nilotinib versus imatinib (ENESTnd). Apart from this registration study, very few data are currently available on first-line nilotinib treatment. We report here the long-term, 6-year results of the first investigator-sponsored, GIMEMA multicenter phase 2, single-arm trial with nilotinib 400 mg twice daily as first-line treatment in 73 patients with chronic- phase chronic myeloid leukemia. Six-year overall survival and progression-free survival rates were 96%, with one death after progression to blast phase. At 6 years, 75% of the patients were still on nilotinib. The cumulative incidence of major molecular response was 98%; only one patient had a confirmed loss of major molecular response. The cumulative incidence of deep molecular response (MR 4.0) was 76%. Deep molecular response was stable (≥2 years) in 34% of these patients. Cardiovascular adverse events, mainly due to arterial thrombosis, occurred in 11/73 patients (15%), after 24 to 76 months of therapy. They were more frequent in elderly patients, and in those with baseline cardiovascular risk factors. None was fatal, although there was a relevant morbidity. This is the study with the longest follow-up of a high dose of nilotinib (400 mg twice daily): it highlights the high efficacy and the cardiovascular toxicity of the drug (CTG.NCT.00481052)

    Flow Cytometry Assessment of CD26 + Leukemic Stem Cells in Peripheral Blood: A Simple and Rapid New Diagnostic Tool for Chronic Myeloid Leukemia

    Get PDF
    Background: Recent investigations in chronic myeloid leukemia (CML) have focused on the identification and characterization of leukemic stem cells (LSCs). These cells reside within the CD34 + /CD38 ─ /Lin ─ fraction and score positive for CD26 (dipeptidylpeptidase IV) a marker, expressed in both bone marrow (BM) and peripheral blood (PB) samples, that discriminates CML cells from normal hematopoietic stem cells (HSCs) or from LSCs of other myeloid neoplasms. CD26 evaluation could be a useful tool to improve the identification of CML LCSs by using flow-cytometry assay. Methods: CD26 + LSCs have been isolated from EDTA PB and BM samples of patients with leucocytosis suspected for CML. Analysis of LSCs CML has been performed by using custom-made lyophilized pre-titrated antibody mixture test and control tube and a CD45 + /CD34 + /CD38 − /CD26 + panel as a strict flow cytometric gating strategy. Results: The expression of CD26 on CD34 + /CD38 − population was detectable in 211/211 PB and 84/84 BM samples of subsequently confirmed BCR-ABL + CP-CML patients. None of the 32 samples suspicious for CML but scoring negative for circulating CD26 + LSCs were diagnosed as CML after conventional cytogenetic and molecular testing. To validate our results, we checked for PB CD26 + LSCs in patients affected by other hematological disorders and they all scored negative for CD26 expression. Conclusions: We propose flow cytometry evaluation of CD26 expression on PB CD34 + /CD38 − population as a new rapid, reproducible, and powerful diagnostic tool for the diagnosis of CML. © 2019 The Authors. Cytometry Part B: Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society
    corecore