7 research outputs found

    Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals

    Get PDF
    Background and Aims In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. Methods We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. Key Results Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. Conclusions Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn implies that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants

    Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae

    Get PDF
    Background Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. Methods Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). Results In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. Conclusions This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future

    Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals

    Get PDF
    Centro de Investigación Forestal (CIFOR)In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting.The study was supported by the Polish National Science Centre (2017/24/C/NZ8/00151), the Polish State Committee for Scientific Research (6 P04G 045 21, 3 P04G 111 25), the Polish Ministry of Science and Higher Education (N304 362938), the US National Science Foundation (DEB 165511, DEB-02-40963, DEB-05-15756, DEB-10-20889, DBI-9978807, DEB-0642594, DEB-1556707), the Wilkes University Fenner Endowment, USDA/NIFA grant 2017-03807, the Hatch Act (225165) through the USDA National Institute of Food and Agriculture, PROPINEA (CC-16-095, AGL-2017-83828-C2), FORASSEMBLY (CGL2015-70558-P), BEEMED (SGR913) and a Marsden Fund grant (UOC1401).Peer reviewed9 Pág

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Oak (Acorn)–Weevil Interactions across an Extensive Latitudinal Gradient in Eastern North America

    No full text
    Recent studies have explored how nut weevils (Curculio and Conotrachelus spp. (Coleoptera: Curculionidae) prey on the fruits (acorns) of oak (Quercus spp.). However, few, if any, have examined these interactions over both an extensive geographic area and over several years. Here, we observed patterns of infestation in acorns of both red oak (Quercus rubra) and white oak (Quercus alba) over an eight-year period along a latitudinal transect, extending as far as 900km, across much of the shared range of these two oak species. Although weevil prevalence did not differ significantly between the two oak species, in red oak, infestation prevalence increased significantly with latitude. In contrast, an opposite pattern was evident in white oak, with the highest infestation prevalence occurring at lower latitudes. One controlled measure of cotyledon damage was significantly lower in acorns of red oak than those of white oak, which may in part be due to larger acorn size at the lower latitudes. Future investigations in this system should focus on the distribution of weevil species (with DNA barcoding) across this range and geographic variation in chemical gradients that likely determine patterns of weevil damage in individual acorns

    Seed predation selects for reproductive variability and synchrony in perennial plants

    No full text
    Centro de Investigación Forestal (CIFOR)Annually variable and synchronous seed production by plant populations, or masting, is a widespread reproductive strategy in long-lived plants. Masting is thought to be selectively beneficial because interannual variability and synchrony increase the fitness of plants through economies of scale that decrease the cost of reproduction per surviving offspring. Predator satiation is believed to be a key economy of scale, but whether it can drive phenotypic evolution for masting in plants has been rarely explored. We used data from seven plant species (Quercus humilis, Quercus ilex, Quercus rubra, Quercus alba, Quercus montana, Sorbus aucuparia and Pinus pinea) to determine whether predispersal seed predation selects for plant phenotypes that mast. Predation selected for interannual variability in Mediterranean oaks (Q. humilis and Q. ilex), for synchrony in Q. rubra, and for both interannual variability and reproductive synchrony in S. aucuparia and P. pinea. Predation never selected for negative temporal autocorrelation of seed production. Predation by invertebrates appears to select for only some aspects of masting, most importantly high coefficient of variation, supporting individual-level benefits of the population-level phenomenon of mast seeding. Determining the selective benefits of masting is complex because of interactions with other seed predators, which may impose contradictory selective pressures.The research was supported by (Polish) National Science Centre grant nos. 2018/28/U/NZ8/00003 (Uwertura) and 2017/24/C/NZ8/00151 (Sonatina). SM and MAS recognize support from the US National Science Foundation (DEB-9442602, DBI-9978807, DEB-0642504 and DEB-15556707), the H. Fenner Endowment of Wilkes University and landowners (G. Vanesky, W. & M. Martin, F. Balliet and Hawk Mountain Sanctuary) for long-term use of their forests. RC’s research is funded by National Project OLDPINE AGL-2017-83828-C2.1R.Peer reviewed8 Pág

    Seed predation selects for reproductive variability and synchrony in perennial plants

    No full text
    Centro de Investigación Forestal (CIFOR)Annually variable and synchronous seed production by plant populations, or masting, is a widespread reproductive strategy in long-lived plants. Masting is thought to be selectively beneficial because interannual variability and synchrony increase the fitness of plants through economies of scale that decrease the cost of reproduction per surviving offspring. Predator satiation is believed to be a key economy of scale, but whether it can drive phenotypic evolution for masting in plants has been rarely explored. We used data from seven plant species (Quercus humilis, Quercus ilex, Quercus rubra, Quercus alba, Quercus montana, Sorbus aucuparia and Pinus pinea) to determine whether predispersal seed predation selects for plant phenotypes that mast. Predation selected for interannual variability in Mediterranean oaks (Q. humilis and Q. ilex), for synchrony in Q. rubra, and for both interannual variability and reproductive synchrony in S. aucuparia and P. pinea. Predation never selected for negative temporal autocorrelation of seed production. Predation by invertebrates appears to select for only some aspects of masting, most importantly high coefficient of variation, supporting individual-level benefits of the population-level phenomenon of mast seeding. Determining the selective benefits of masting is complex because of interactions with other seed predators, which may impose contradictory selective pressures.The research was supported by (Polish) National Science Centre grant nos. 2018/28/U/NZ8/00003 (Uwertura) and 2017/24/C/NZ8/00151 (Sonatina). SM and MAS recognize support from the US National Science Foundation (DEB-9442602, DBI-9978807, DEB-0642504 and DEB-15556707), the H. Fenner Endowment of Wilkes University and landowners (G. Vanesky, W. & M. Martin, F. Balliet and Hawk Mountain Sanctuary) for long-term use of their forests. RC’s research is funded by National Project OLDPINE AGL-2017-83828-C2.1R.Peer reviewed8 Pág
    corecore