70 research outputs found

    Tripeptide Self-Assembly into Bioactive Hydrogels: Effects of Terminus Modification on Biocatalysis

    Get PDF
    Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His-d-Phe-d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance

    Assembly of a Tripeptide and Anti-Inflammatory Drugs into Supramolecular Hydrogels for Sustained Release

    Get PDF
    5siSupramolecular hydrogels offer interesting opportunities for co-assembly with drugs towards sustained release over time, which could be achieved given that the drug participates in the hydrogel nanostructure, and it is not simply physically entrapped within the gel matrix. dLeu-Phe-Phe is an attractive building block of biomaterials in light of the peptide’s inherent biocompatibility and biodegradability. This study evaluates the assembly of the tripeptide in the presence of either of the anti-inflammatory drugs ketoprofen or naproxen at levels analogous to commercial gel formulations. Fourier-transformed infrared (FT-IR), circular dichroism, Thioflavin T fluorescence, transmission electron microscopy (TEM), and oscillatory rheometry are used. Drug release over time is monitored by means of reverse-phase high performance liquid chromatography, and shows different kinetics for the two drugs.openopenKurbasic, Marina; Romano, Chiara Damiana; Garcia Fernandez, Ana Maria; Kralj, Slavko; Marchesan, SilviaKurbasic, Marina; Romano, CHIARA DAMIANA; GARCIA FERNANDEZ, ANA MARIA; Kralj, Slavko; Marchesan, Silvi

    Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters!

    Get PDF
    Short peptide hydrogels are attractive biomaterials but typically suffer from limited mechanical properties. Inclusion of other nanomaterials can serve the dual purpose of hydrogel reinforcement and of conferring additional physicochemical properties (e.g., self-healing, conductivity), as long as they do not hamper peptide self-assembly. In particular, nanocarbons are ideal candidates, and their physicochemical properties have demonstrated great potential in nanocarbon-polymer gel biomaterials for tissue engineering or drug delivery. Recently, increasing interest in supramolecular hydrogels drove research also on their enhancement with nanocarbons. However, little is known on the effect of nanocarbon morphology on the self-assembly of short peptides, which are among the most popular hydrogel building blocks. In this work, three different oxidized nanocarbons (i.e., carbon nanotube or CNT as 1D material, graphene oxide sheet or GO as 2D material, and carbon nanohorn or CNH as 3D material) were evaluated for their effects on the self-assembly of the unprotected tripeptide Leu-DPhe-DPhe at physiological conditions. Supramolecular hydrogels were obtained in all cases, and viscoelastic properties were clearly affected by the nanocarbons, which increased stiffness and resistance to applied stress. Notably, self-healing behavior was observed only in the case of CNTs. Tripeptide\u2013nanotube interaction was noted already in solution prior to self-assembly, with the tripeptide acting as a dispersing agent in phosphate buffer. Experimental and in silico investigation of the interaction between peptide and CNTs suggests that the latter acts as nucleation templates for self-assembly and reassembly. Overall, we provide useful insights for the future design of composite biomaterials with acquired properties

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska LĂ€karesĂ€llskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska LĂ€karesĂ€llskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    SELF-ASSEMBLY DEI PEPTIDI ETEROCHIRALI IN IDROGEL ANTIMICROBICI

    No full text
    In questo progetto \ue8 stata fatta la sintesi, purificazione e caratterizzazione del tripeptide riportato in letteratura DLeu-LPhe-LPhe e di una serie di nuovi analoghi idrofobici per identificare nuove sequenze con migliore attivit\ue0 antimicrobica, ma anche capaci di formare idrogel supramolecolari. Ogni peptide \ue8 stato testato sia in soluzione che come idrogel su colture di E. coli per iniziare a delineare una correlazione tra struttura e attivit\ue0 ed ottenere i primi elementi verso la delucidazione del meccanismo d\u2019azione. L\u2019attivit\ue0 antimicrobica di DLeu-LPhe-LPhe \ue8 stata confermata ed \ue8 stata anche riscontrata nel caso del suo enantiomero LLeu-DPhe-DPhe, suggerendo un meccanismo d\u2019azione non mediato da recettore. Tuttavia, l\u2019attivit\ue0 riscontrata risulta molto inferiore rispetto a quella riportata in letteratura. Ci\uf2 nonostante, sono state identificate nuove sequenze capaci di autoassemblarsi e formare idrogel, di cui alcuni con propriet\ue0 antimicrobiche paragonabili a DLeu-LPhe-LPhe. Da sottolineare che l\u2019attivit\ue0 antimicrobica \ue8 stata osservata solo per gli idrogel, e non in soluzione, indicando l\u2019importanza delle strutture supramolecolari per l'attivit\ue0 antimicrobica.This research project focussed on the synthesis, purification, and characterisation of the reported tripeptide DLeu-LPhe-LPhe and a series of analogous short, hydrophobic peptides with the aim of identifying novel sequences with improved antimicrobial activity and possibly also self-assembly ability towards antimicrobial hydrogel biomaterials. Each peptide antimicrobial activity was also evaluated in solution- and gel-based assays on E.coli cultures, with the aim of drawing the first structure-activity correlations and gain the first insights into the potential mechanism of action. The antimicrobial activity of DLeu-LPhe-LPhe was confirmed and found also for its enantiomer LLeu-DPhe-DPhe, suggesting a mechanism of action that is not mediated by a receptor. However, the antimicrobial activity observed in this work was significantly minor than that reported in the literature.3 Nevertheless, this work led to the identification of new, self-assembling sequences, including examples with comparable antimicrobial activity to DLeu-LPhe-LPhe. Interestingly, such an activity was detected only in the hydrogel-state, and not in solution, indicating a key role played by the supramolecular structures

    Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

    Get PDF
    The combination of different components such as carbon nanostructures and organic gelators into composite nanostructured hydrogels is attracting wide interest for a variety of applications, including sensing and biomaterials. In particular, both supramolecular hydrogels that are formed from unprotected D,L-tripeptides bearing the Phe-Phe motif and nitrogen-doped carbon nanodots (NCNDs) are promising materials for biological use. In this work, they were combined to obtain luminescent, supramolecular hydrogels at physiological conditions. The self-assembly of a tripeptide upon application of a pH trigger was studied in the presence of NCNDs to evaluate effects at the supramolecular level. Luminescent hydrogels were obtained whereby NCND addition allowed the rheological properties to be fine-tuned and led to an overall more homogeneous system composed of thinner fibrils with narrower diameter distribution

    The Photochemical Activity of a Halogen-Bonded Complex Enables the Microfluidic Light-Driven Alkylation of Phenols

    Get PDF
    9siA mild light-driven protocol for the direct alkylation of phenols is reported. The process is driven by the photochemical activity of a halogen-bonded complex formed upon complexation of the in situ generated electron-rich phenolate anion with the α-iodosulfone. The reaction proceeds rapidly (10 min) under microfluidic conditions, delivering a wide variety of ortho-alkylated products (27 examples, up to 97% yield, >20:1 regioselectivity, on a gram scale), including densely functionalized bioactive phenol derivatives.noneopenSara Cuadros, Cristian Rosso, Giorgia Barison, Paolo Costa, Marina Kurbasic, Marcella Bonchio, Maurizio Prato, Giacomo Filippini,* and Luca Dell’Amico*Cuadros, Sara; Rosso, Cristian; Giorgia Barison, #; Costa, Paolo; Kurbasic, Marina; Bonchio, Marcella; Prato, Maurizio; Filippini, Giacomo; Luca Dell’Amico, An
    • 

    corecore