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1. Leu-PPhe-PPhe spectroscopic data
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Fig. S1. Chemical structure of Leu-°"Phe-PPhe in its zwitterionic form.

'H NMR (500 MHz, DMSO-dg)  (ppm) 8.73 (d, J = 8.5 Hz, 1 H, NH), 8.62 (d, J = 8.6 Hz, 1 H,
NH), 7.98 (broad s, 3 H, NHz), 7.32 — 7.16 (m, 10 H, Ar), 4.72 (ddd, J = 10.6, 8.6, 4.5 Hz, 1 H,
aCH), 4.47 (m, 1 H, aCH), 3.64 (m, 1 H, aCH), 3.11 (dd, J = 4.4 Hz, Jgem= 13.7 Hz, 1H, BCH>),
2.95(dd, J=6.7 Hz, Jgem=13.7 Hz, 1 H, BCH2), 2.65 (dd, J = 7.8 Hz, Jgem = 13.7 Hz, 1 H, BCH>),
2.78 (dd, J = 10.7 Hz, Jgem = 13.6 Hz, 1 H, BCH>), 1.16 — 1.06 (m, 3 H, BCH, yCH3), 0.68 (dd, J
=5.7 Hz, 6 H, 8CH3). 3C NMR (125 MHz, DMSO-ds) & (ppm) 172.7, 171.2, 168.7 (3 x CO);
137.5,137.4,129.3, 129.1, 128.3, 128.0, 126.5, 126.3 (Ar); 53.7, 53.6, 50.6 (3 x aC); 40.3, 38.1,
36.6 (3 x BC); 23.1, 22.5 (2 x yC); 21.7. (8C). MS (ESI): m/z 426.2 [M+H]* 448.2 [M+Na]*
C24H31N304 requires 425.2.
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Fig. S2. 'H-NMR spectrum of Leu-°"Phe-PPhe.
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Fig. S3. ®*C-NMR spectrum of Leu-PPhe-PPhe.
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Fig. S4. LC-MS trace of Leu-°Phe-PPhe. Method: t = 0, 95% water (+0.1% HCOOH) and 5%

MeCN (+0.1% HCOOH); t = 10 min, 5% water (+0.1% HCOOH) and 95 % MeCN (+0.1 %
HCOOH). Flow 0.5 ml min™,

S3



T
00

2. Rheological characterization of tripeptide hydrogels

Fig. S5. ESI-MS spectra of Leu-°Phe-PPhe in positive (top) and negative (bottom) ion mode.
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Fig. S6. Frequency sweep data at various concentrations of Leu-PPhe-PPhe tripeptide.
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Characterization of oxidized nanocarbons

TEM micrographs

Raman TGA (nitrogen gas)
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Fig. S7. Characterization data for oxidized nanocarbons.

Photographs of nanocarbon dispersions in the alkaline buffer
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Fig. S8. Photographs of the nanocarbon dispersions in the alkaline buffer.
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5. TEM images of peptide-nanocarbons at alkaline pH prior to self-assembly

Fig. S10. TEM image of peptide-coated MWCNTSs in the alkaline buffer. Dotted lines trace CNTs
external wall to guide the eye.
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Fig. S11. TEM image of peptide-coated GO in the alkaline buffer.

Fig. S12. TEM image of CNHs partially coated by peptide in the alkaline buffer.




6. AFM images of peptide-nanocarbons at alkaline pH prior to self-assembly
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Fig. S13. AFM images of peptide alone (A), with GO (B), with CNTs (C), and with CNHSs (D) in the

alkaline buffer.

7. Peptide fibril and fiber diameter as calculated from TEM images.

Peptide alone 115+22
Peptide + CNT 1 mg/ml 122+22
Peptide + GO 1 mg/ml 102+16
Peptide + CNH 1mg/ml 109+17

442 +17.1

248 +6.2

23.3+4.6

345+8.3

Table S1. Average (n=100) diameter of peptide fibrils (after 1 h) and fibers (after 24 h) with or

without nanocarbons.
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Hydrogel mesh size evaluation

Flory’s theory about gels enables the determination of the crosslink density px (defined as the moles of
crosslinks between different polymeric chains per unit volume):

b= G[q’f (1)

“RT (4,

where G is the gel shear modulus, R is the universal gas constant, T is the absolute temperature while ¢
and ¢o are, respectively, the gel polymer volume fraction in the swollen state and in the crosslinking state
(in the case of this work, ¢ = ¢o as gel did not undergo further swelling after its formation). G can be
evaluated as the sum of all the spring constants of the generalized Maxwell model. This model assumes
that the viscoelastic behaviour of every material can be properly described by a parallel disposition of n
arms (elements) each one constituted by a spring (of constant G;) and a dashpot (containing a fluid of
viscosity n;) in series. According to the generalised Maxwell model, the storage (or elastic, G’) and the
loss (or viscous, G’”) moduli can be expressed by:

_ N no)* _ (2
G Ge+§Gi1+(kim)z, G =0/}

R 0N (3)
=28 ey

where G; and A; are, respectively, the spring constant and the relaxation time of the i"" element, w is the
solicitation pulsation (= 2z f, f = solicitation frequency) and Ge is the elastic constant of the first Maxell
element that is supposed to purely elastic (its relaxation time goes to infinity). Egs. (2)-(3) fitting to
experimental frequency data (see, for example, Figure S6), according to a proper statistical procedure
required to determine the number n of Maxwell elements, allows the determination of Ge and Gi. Thus G
=G+ G+ Gy + ...+ G

Once py is known, the equivalent network theory of Schurz allows evaluating the average network mesh
size &a:

&, =%/6/mp, N, (4)

where Na is the Avogadro number.

Peptide hydrogel 16.1+0.3
+ CNT 129+£0.3
+ GO 104+0.1
+ CNH 12.3+£0.2

Table S2. Mesh size of hydrogel networks. & indicates the distance between two nodes of the network.
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9. TEM images of peptide-nanocarbon hydrogels
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Figure S15. CNT-peptide hydrogel.
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Figure S17. CNH-peptide hydrogel.
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10. Rheological characterization of peptide-nanocarbon hydrogels
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Fig. S18. Time sweep of peptide (black trace) and peptide-nanocarbon (colored traces) hydrogels.
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Fig. S19. Stress sweeps of peptide and peptide-nanocarbon hydrogels.
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Fig. S20. Frequency sweeps of peptide and peptide-nanocarbon hydrogels.

Sample G’ + STD (kPa) G”’ £ STD (kPa)
Peptide alone 20+£0.1 0.08 £ 0.02
Peptide + CNT 1 mg/ml 6.1+£20 0.20+0.08
Peptide + GO 1 mg/ml 58+1.0 0.20+0.04
Peptide + CNH 1mg/ml 3.0£0.3 0.15+0.06

Table S3. Viscoelastic moduli of peptide-nanocarbon hydrogels (n=3).
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Fig. S21. Stress-recovery test for hydrogel with 0.1 mg ml? CNTs. After 30 min., the hydrogel is
challenged with 30"’ pulses at increasing stress (i.e., 50, 100, and 150 Pa) with 5 min. intervals at 1 Pa to
allow for recovery. The gel-to-sol transition occurs at 150 Pa, then the gel state is recovered.

11. AFM and TEM images of peptide-CNT fresh hydrogels
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Fig. S22. AFM image of CNT-peptid
linescans (right).

50.0 nm B

15

350 10

¥ [nm]

00

— Profile 1
— Profile 2
— Profile 3

EEEEEEENE NN A EE NN EN RN R NN

LML B I L B Y I B O B

0.0 0.1 0.2 0.3 0.4

e hydrogel after 1 hour of self-assembly (left) and height

S14



RS

Fibg. S23. :I'EM micrographs of peptide-E)N'I; hydrogel freéh éamples. Yellow lines trace E:N'I;s.

515



12. Spectroscopic characterization of peptide-nanocarbon systems
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Fig. S24. Raman spectra of peptide-nanocarbon hydrogels.
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Fig. S25. ATR-IR (left) CD (right) spectra of peptide-nanocarbon gels. Note: CD signal intensity
displayed high variability due to light scattering in the presence of nanocarbon.
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Fig. S26. ATR-IR (left) CD (right) spectra of peptide-nanocarbon gel precursor solutions.

In silico study of peptide-CNT system

Five systems were calculated varying the CNT model:

a. pristine CNT

1% oxidized system, with 1% atoms on the external CNT surface with epoxide functionalization
1% oxidized system, with 1% atoms on the CNT external surface with OH functionalization

10% oxidized system, with 10% atoms on the external CNT surface with epoxide functionalization
10% oxidized system, with 10% atoms on the CNT external surface with OH functionalization

T o0 o

The oxidized groups were randomly located on the external CNT. The epoxide and alcohol functionalized
groups share the same locations at the same oxidation degrees. Both epoxide and alcohol models led to
similar results, of which the alcohol is shown in the main MS. The tripeptide is considered in zwitterionic
form, the terminal charged beads are represented as red (negative) and blue (positive) spheres. The
unfunctionalized CNT beads are rendered as grey spheres while the functionalized beads are rendered as
green spheres.

After 20M MD steps (shown in the main MS and in Fig. S16), the peptide-CNT systems are not fully
equilibrated. Four periodic boxes in the direction perpendicular to the tube axis are represented in Fig. 6
in the MS and Fig. S16. For the pristine CNT (Fig. S16a), after 20M MD steps, most tripeptides have been
adsorbed on the CNT. For the 1 % oxidation and epoxide functionalization there is a large sphere-like
peptide agglomerate dispersed in water, and very little peptide is adsorbed onto the CNT (Fig. S16b). For
the alcohol, more polar, functionalization, a similar pictures is observed but the aggregate is smaller and
more adsorption is observed on the CNT (Fig. S16c¢). The 10 % oxidation shows a peptide fibre connecting
the neighbouring CNTSs spanning a 8.5 nm distance (Figs. S16d and S16e).

If we consider 10x longer simulation times, namely 200M MD steps (nominal simulation time 6
microseconds), the systems equilibrate to all tripeptides adsorbed onto a single CNT on approximately
two adlayers (Fig. S17). Interestingly, all systems yield similar, full coverage of the CNT, although the
10% oxidized model with alcohol groups shows an empty region throughout the MD simulation.
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Fig. S27. Models of peptide-CNT systems after 20M MD steps. (a) Pristine CNT; 1 % oxidized
CNT with (b) epoxide groups or (c) alcohol groups; 10 % oxidized CNT with (d) epoxide groups or
(e) alcohol groups (c). The tripeptide is in zwitterionic form, the terminal charged beads are
represented as red (negative) and blue (positive) spheres. The phenyl groups are modelled by three
beads and are rendered as yellow triangles. The unfunctionalized CNT beads are represented as
grey spheres while the functionalized beads are rendered as green spheres. Four periodic boxes in
the direction perpendicular to the tube axis are represented.
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Fig. S28. Models of peptide-CNT systems after 200M MD steps. (a) Pristine CNT; 1 % w/w oxidized
CNT with (b) epoxide groups or (c) alcohol groups; 10 % w/w oxidized CNT with (d) epoxide groups
or (e) alcohol groups (c). The tripeptide is in zwitterionic form, the terminal charged beads are
represented as red (negative) and blue (positive) spheres. The phenyl groups are modelled by three
beads and are rendered as yellow triangles. The unfunctionalized CNT beads are represented as
grey spheres while the functionalized beads are rendered as green spheres. Two periodic boxes in
the direction parallel to the tube axis are represented.
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