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Abstract: Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest
in recent years. In particular, the search is active for sequences that are able to mimic enzymes when
they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material
whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes
that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from
their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze
a plethora of reactions. We recently reported the minimalistic L-His–D-Phe–D-Phe for its ability to
self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we
analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer
sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized,
purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and
esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the
termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the
future design of supramolecular catalysts for enhanced performance.

Keywords: peptides; hydrogels; biomaterials; self-assembly; chirality; D-amino acids; hydro-
lase; biocatalysis

1. Introduction

The ability of natural enzymes to catalyze reactions with exquisite selectivity in
water has been inspiring scientists for a long time in the search for simpler, synthetic
mimetics that are ultimately biodegradable for a low impact on the environment [1]. In
the area of biomaterials, enzyme mimicry has found a wide variety of applications to
tackle unsolved challenges, ranging from combating biofilms [2] to cancer therapy [3]. In
particular, hydrolases are among the most studied targets to develop mimetics thanks to
their robustness and ability to catalyze a wide range of reactions [4,5]. They have been
anchored on biopolymers for enhanced activity and durability [6], or they have been used
for the formation of products for biomedical use [7]. A popular strategy includes hydrolase-
sensitive bioactive molecules in the biomaterial to make it adaptive to the biological
milieu, for tissue engineering [8], immunomodulation [9], or antimicrobial activity [10],
for instance.

One shortcoming of enzymes, however, is that they typically comprise over one
hundred amino acids and may even trigger an immune response; thus, it is not surprising
that the search has been very active to replace them with shorter sequences [11]. Self-
assembling peptides appear ideal candidates thanks to the possibility to encode catalytic
functions of the enzyme directly into the peptide sequence, combined with the ability to
form supramolecular hydrophobic pockets for reactions to occur, as well as the added
value of multivalency of the resulting (nano)structures [12]. However, their design is
notoriously challenging, especially in light of the diverse conformations they can adopt [13].

Molecules 2021, 26, 173. https://doi.org/10.3390/molecules26010173 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6089-3873
https://doi.org/10.3390/molecules26010173
https://doi.org/10.3390/molecules26010173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26010173
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/1/173?type=check_update&version=2


Molecules 2021, 26, 173 2 of 11

Nevertheless, different strategies proved successful [14], also aimed at the formation of
catalytic hydrogels as functional materials [15].

A very popular approach to achieve a biocatalytic nanostructure for hydrolase mimicry
consists of the design of a self-assembling peptide that contains histidine (His) in the se-
quence. Earlier reports demonstrated that this strategy was successful on several 14-mers [16].
Since then, there has been a continuous effort toward the inclusion of His in small-
molecular-weight derivatives as gelators [17] or the gradual shortening of the peptide se-
quence, for instance to 13-mers [18], 11-mers [19], heptapeptides [20,21], tetrapeptides [22],
tripeptides [23,24], or cyclic dipeptides [25]. In other systems, activity could be boosted
by the presence of cations, such as zinc [26–29] or iron [30], or by additional amino acids
to mimic the catalytic triad (Scheme 1) [31], such as Ser, [32,33] Arg [16,34], or Asp [35,36].
We recently reported a minimalistic sequence composed of the unprotected, heterochiral
tripeptide L-His–D-Phe–D-Phe (or its enantiomer D-His–L-Phe–L-Phe), able to self-organize
in phosphate buffer into biocatalytic nanostructures that, at higher concentrations, yielded
thermoreversible hydrogels [24]. The design was based on the combination of both D- and
L-amino acids at specific positions along a heterochiral sequence [37], so that gelling, am-
phipathic supramolecular structures could arise due to the diphenylalanine self-assembling
motif [38]. When assembled, the tripeptide demonstrated an esterase-like activity on the
hydrolysis of 4-nitrophenyl acetate (pNPA), a model compound that got hydrolyzed to the
yellow-colored 4-nitrophenol (pNP) [39]. A proposed mechanism involves the presence of
both a free base acting as a nucleophile or general base (e.g., the His side chains or amine
at the N-terminus), as well as a protonated His stabilizing the oxyanion intermediate [40].
Self-assembly leads to a change in the chemical environment around the His residues,
and this is a well-known factor [41–43] that can induce an apparent pKa shift [44] which
could activate the peptide, thus mimicking the role played for instance by Asp in the
catalytic triad [41]. An attractive feature of supramolecular peptide-based catalysts is
the possibility to recycle the systems, for instance, by means of pH switches to control
assembly/disassembly cycles [45].
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Nevertheless, the de novo design of catalytic supramolecular systems based on mini-
malistic peptides is still rather challenging, and even minor structural modifications may
affect self-assembly and catalysis in ways that are difficult to predict. For instance, C-
terminal amidation was previously reported to accelerate the gelation kinetics of Fmoc-Phe
derivatives [46], whereas presence of a carboxylic acid moiety at the C-terminus may assist
with the catalysis [33]. Therefore, in order to gain new insights into these systems, this work
analyzed the supramolecular behavior and catalytic performance of D-His–L-Phe–L-Phe
N-acetylated, C-amidated, or both, with the ultimate aim of gathering useful information
for the future design of enhanced systems.

2. Results and Discussion
2.1. Peptide Self-Assembly into Nanostructured Hydrogels

The peptides shown in Scheme 2 were synthesized in solid phase according to es-
tablished protocols [47], purified by reverse-phase HPLC, freeze-dried, and characterized
by 1H- and 13C-NMR and ESI-MS to verify their purity and identity (see Supplementary
Materials). At neutral pH, the parent compound L-His–D-Phe–D-Phe (or its enantiomer D-
His–L-Phe–L-Phe) was shown to stack, through hydrogen bonding between amide groups,
into β-sheet-like structures to give rise to amyloid fibrils, which, at higher concentrations,
further bundled into fibers and gelled [24]. Analogously, each peptide 1–3 was tested
for self-assembly and hydrogelation in phosphate buffer at neutral pH. Interestingly, N-
acetylated 1 did not gel at all, yielding macroscopic aggregates beyond its solubility limit.
By contrast, 2 and 3 formed stable hydrogels already at 25 mM (Table 1 and Figure 1).
For comparison, the tripeptide analogue with unprotected termini displayed a minimum
gelling concentration (mgc) of 50 mM [24]. We inferred that terminus modification in-
creased the compound hydrophobicity and lowered the mgc. HPLC retention times (see
Supplementary Materials), which can be considered an experimental measure of hydropho-
bicity [48], were in the order 2 << 3 ≈ 1, which can be rationalized considering that 2 is
the only one with an ionizable group at the N-terminus. Additionally, hydrogelation is a
complex process that requires not only hydrophobicity to drive molecular aggregation, but
also the generation of amphipathic architectures, whereby hydrophilic surfaces engage
through hydrogen-bonding interactions with water [48]. If compound 1 displayed a de-
protonated carboxylate anion at the C-terminus at neutral pH, then it would have fewer
hydrogen-bonding donors relative to amidated 2 and 3 and, thus, reduced possibilities
for interactions with water, which may explain the formation of aggregates as opposed to
a hydrogel.
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Table 1. Hydrogels were formed by compounds 2 and 3, but not 1, in phosphate buffer at neutral pH.

Tripeptide N-Terminus C-Terminus 1 mM 25 mM 50 mM

L-His–D-Phe–
D-Phe NH2 COOH Sol Sol Hydrogel

1 Acetylated COOH Sol Sol Aggregates
2 NH2 Amidated Sol Hydrogel Hydrogel
3 Acetylated Amidated Sol Hydrogel Hydrogel
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Figure 1. Photographs of (a) 1, (b) 2, and (c) 3 in phosphate buffer at 25 and 50 mM.

Transmission electron microscopy revealed the presence of nanofibrils in all cases
(Figure 2). Interestingly, their diameters were 11 ± 1 nm for 1, 8 ± 2 nm for 2, and
11 ± 3 nm for 3 (n = 100). Oscillatory rheometry was then used to assess the viscoelastic
properties of the resulting materials (Figure 3). Both 2 and 3 gelled within a minute, with
gelation kinetics being faster for 2 relative to 3. A possible explanation lies in the fact that
only 2 displays an ionizable N-terminus; thus, following the pH trigger, the ammonium
species forms immediately and prompts gelation. By contrast, the ionization state of 3 is
not expected to vary upon application of the pH change from alkaline to neutral, and it
may, thus, take longer for this species to self-organize into a fibrillar hydrogel. After 1 h,
the elastic modulus G’ reached 23 kPa for 2 and 68 kPa for 3. The higher stiffness for the
hydrogel composed of 3, relative to 2, was in agreement with the wider fibrils observed
by TEM for the former relative to the latter. Stress sweeps revealed a linear viscoelastic
region up to ca. 70 Pa for 2 and 30 Pa for 3. It is possible that the thinner fibrils of 2
displayed higher interconnectivity leading to higher stability against applied stress, as
already observed for other gelling heterochiral tripeptides [48].
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2.2. Peptide Conformational Study

Circular dichroism (CD) spectra were acquired in the sol state (1 mM) for each com-
pound (Figure 4a). 1 and 2 displayed very weak signals; however, the overall signature
with two maxima at 199 and 219 nm was analogous to the one previously observed for
similar assembling heterochiral tripeptides [48]. In that case, a combination of experimental
and in silico data allowed deciphering the CD spectra as a population of conformations in
solution, of which the most stable populated the top-left quadrant of the Ramachandran
plot, where β-structures (sheets and turns) are located. By contrast, the spectrum of 3
was dissimilar and displayed a negative signal under 200 nm, and a positive maximum
centered at 223 nm, with visible scattering occurring at higher wavelengths. This signal was
already reported for similar short peptides that displayed Phe–Phe interactions and may be
indicative of compound 3’s marked tendency to stack into fibrils that yield scattering [49].
CD data were also acquired at gelling concentrations (Figure 4b), although, in this case,
acquisition was possible only above 220 nm due to high voltage. Interestingly, assembly
significantly altered the spectra for both 2 and 3 since the gels displayed a negative min-
imum at 230 and 238 nm, respectively. Furthermore, the gel of 3 displayed the typical
vibronic signature for the forbidden π–π* transition of the aromatic side chains of Phe, as a
result of its inclusion in a supramolecular chiral environment, noted also for the parent
compound [24].

Thioflavin T fluorescence (ThT) was then used as an assay to determine the presence
of amyloid structures [50], since the dye is known to bind onto hydrophobic grooves of
the surface of fibrils composed of at least four consecutive β-sheets [51]. As a result of the
binding, the rotation is impeded between the two aromatic rings that compose the dye,
yielding fluorescence [52]. Surprisingly, only compound 3 displayed marked fluorescence
(Figure 4c), despite the fact that all three formed nanofibrils as evidenced by TEM. Clearly,
the surface topography of the fibrils composed of 3 was different relative to the other
analogues, and it bound thioflavin more efficiently. It has been shown that ThT binding
is not mediated by electrostatic interactions, and it is, thus, favored on fibrils formed by
neutral species as is compound 3, and disfavored onto highly charged surfaces, as may
be those of compounds 1 and 2 [53]. The amide I region of attenuated total reflectance
(ATR) Fourier-transformed infrared (FT-IR) spectra of the three gels (Figure 4d–f) revealed
a major peak at 1638 cm−1 for 1 and 3, which is typical for β-sheet-like structures; this
signal was shifted to 1645 cm−1 in the case of compound 2. Compound 3 was the only
one to also display an intense signal at 1620 cm−1, which is in the region of amyloid
structures, in agreement with the ThT fluorescence data. Additionally, all spectra presented
a broad signal in the region of 1670–1680 cm−1 that could be ascribed to the presence of
residual trifluoroacetate.
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Figure 4. Circular dichroism (CD) spectra in the sol (a) and gel (b) states; (c) thioflavin T fluorescence; (d–f) Fourier-transform
infrared (FT-IR) spectra of compounds 1 (d), 2 (e), and 3 (f) in the gel state.

Interestingly, when the hydrogels formed by 2 or 3 were tested against heating in a
water bath, both started to disassemble at rather high temperature values (i.e., 65 ◦C for
2 and 70 ◦C for 3), but only 2 was thermoreversible and reformed upon cooling to room
temperature. By contrast, 3 expelled water and irreversibly formed aggregates.

2.3. Esterase-Like Biocatalysis

Having confirmed that all three compounds self-assembled at neutral pH into fibrils,
they were tested as biocatalysts for esterase mimicry. 4-Nitrophenyl acetate (pNPA) was
chosen as a model compound, since it gets hydrolyzed to the yellow-colored 4-nitrophenol
that can easily be monitored spectrophotometrically [39]. The three compounds in solution
at 1 mM did not show significant catalysis, analogously to the parent heterochiral com-
pound His–Phe–Phe [24]. The observed reaction rates with 1 mM pNPA corresponded
to 4.43 × 10−5 s−1 (1), 2.00 × 10−5 s−1 (2), and 3.85 × 10−5 s−1 (3). Under self-assembly
conditions, the thermoreversible hydrogel formed by C-amidated 2 displayed the best cat-
alytic performance, corresponding to a kobs of 8.68 × 10−3 s−1 at 50 mM, which surpassed
that of the parent heterochiral His–Phe–Phe with free termini under analogous conditions
(1.7 × 10−3 s−1) [24], thus suggesting that a free carboxylic acid at the C-terminus did not
significantly assist in catalysis. In the same conditions, compound 1 formed aggregates,
whose performance was worse than the fibrils obtained at the lower concentration of
25 mM (Table 2). Compared to the parent compound, the catalytic performance under
analogous conditions in the fibril state was slightly worse, suggesting a positive role of the
free N-terminus in catalysis. Lastly, compound 3 displayed the worst biocatalytic activity
of the set of three. For comparison, under analogous conditions relative to those for the best
catalytic performance of 1 (bold in Table 1), 3 displayed a kobs of 4.55 × 10−4 s−1. It should
be noted that it was not possible to analyze the catalytic performance of this compound at
50 mM due to a high level of scattering from the white gel. Overall, the data indicated that
N-acetylation negatively affected biocatalysis, while C-amidation alone improved it.
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Table 2. Catalytic rates (kobs, s−1) of peptides 1–3 on the hydrolysis of 4-nitrophenyl acetate (pNPA).
The best performance for each peptide is indicated in bold.

[pNPA]
mM

1
(Sol)

1
(Fibrils)

1
(Aggregates)

2
(Hydrogel)

3
(Hydrogel)

0.2 1.02 × 10−5 2.17 × 10−4 1.05 × 10−4 3.55 × 10−4 3.83 × 10−5

0.4 1.65 × 10−5 4.39 × 10−4 2.00 × 10−4 2.60 × 10−3 1.50 × 10−4

0.6 2.43 × 10−5 7.61 × 10−4 3.57 × 10−4 5.00 × 10−3 3.11 × 10−4

0.8 3.02 × 10−5 9.70 × 10−4 4.32 × 10−4 7.26 × 10−3 4.41 × 10−4

1.0 4.43 × 10−5 1.16 × 10−3 6.60 × 10−4 8.68 × 10−3 4.55 × 10−4

In conclusion, N-acetylation and/or C-amidation were shown to affect the self-
assembly ability and, to a minor extent, the biocatalytic performance of the heterochiral
His–Phe–Phe tripeptide [24]. All three compounds self-organized into nanofibrils, although
the N-acetylated analogue 1 did not gel at all, and the N-acetylated and C-amidated 3
formed irreversible hydrogels. We infer that the presence of fewer hydrogen-bonding donor
groups in 1 relative to the other compounds negatively affected its ability to interact with
water to gel. Furthermore, compounds 2 and 3 displayed an mgc corresponding to 25 mM,
in contrast with 50 mM for the parent compound, suggesting that terminal modification
increased hydrophobicity and favored hydrogelation. In particular, C-amidated 2 was the
only compound of the set to maintain the ability to form thermoreversible hydrogels, with
an improvement in catalytic performance. These data confirmed that the presence of a free
carboxylic acid at the C-terminus did not significantly assist in the catalysis performed
by this tripeptide sequence. As an additional value, recent reports described a positive
effect of C-amidation on the stability and biological performance of short heterochiral pep-
tides [36]. Future studies will focus on other strategies to enhance the catalytic activity of
the His–Phe–Phe sequence, for instance, through co-assembly with other peptides bearing
different amino acids, such as Ser or Arg, which could mimic the catalytic triad found
in hydrolases, or through peptide sequence extension to include the same residues. For
instance, addition of Arg units at the termini of short self-assembling peptides was shown
to reduce hierarchical association of fibrils and improve gelation kinetics [37].

3. Materials and Methods
3.1. Materials and General Methods

All chemicals and solvents were purchased of analytical grade from Merck (Milan,
Italy), except for the reagents used for peptide synthesis, which were purchased from
GL Biochem (Shanghai, China). Peptides were synthesized in solid phase using standard
protocols based on Fmoc-protection and HBTU/HOAt activation [47]. Purification was
performed on reverse-phase HPLC using an Agilent 1260 Infinity system, equipped with a
C-18 column (Kinetex, 5 microns, 100 Å, 250 × 10 mm, Phenomenex). The gradient used
consisted of acetonitrile/water with 0.05% TFA with the following program: t = 0–2 min,
25% MeCN; t = 14–16 min, 95% MeCN. The purified fractions were freeze-dried to yield a
white, fluffy powder. ESI-MS characterization was performed on an Agilent 6120 Infinity
(Agilent Technologies, Milan, Italy), and NMR spectra were acquired on a Varian Inova
(Varina Inc., Milan, Italy (further details are in the Supplementary Materials). MilliQ water
was obtained with an inline Millipore RiOs/Origin system (Merck, Milan, Italy) with
resistivity higher than 18 MΩ·cm. All experiments were performed with each peptide
at various concentrations in sodium phosphate buffer 0.1 M with a final pH of 7.1 ± 0.1
following the protocol. Self-assembly was tested by dissolving each compound in 0.1 M
sodium phosphate (pH 11.8), followed by mild heating if needed to aid with dissolution
to achieve a final pH of 7.1 ± 0.1. Compound 3 could not be dissolved following this
protocol at 50 mM; therefore, only in this case, the peptide was dissolved in half of the final
volume using 0.1 M sodium phosphate buffer at pH 5.8, followed by dilution with an equal
volume of 0.1 M sodium phosphate buffer at pH 11.8 to reach the final pH of 7.1 ± 0.1.
In the case of peptide solutions at 1 mM, each peptide was dissolved in half of the final
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volume consisting of 0.1 M sodium phosphate buffer at pH 11.8, followed by dilution with
an equal volume of sodium phosphate 0.1 M at pH 5.8 to reach neutrality as described
above. Thermoreversibility was assessed by immersing the vials shown in Figure 1 in an
oil bath that was heated at 5 ◦C/min until ca. 80 ◦C, in which condition no gel residue was
left, and samples were left to cool down to room temperature.

3.2. Oscillatory Rheology

Hydrogels composed of 2 or 3 were formed at 25 mM in situ in an oscillatory rheometer
Kinexus Ultra Plus (Malvern, Alfatest, Milan, Italy) using a stainless-steel 20 mm parallel
plate geometry at 25 ◦C. Time sweeps were recorded at a frequency of 1 Hz and a stress
of 5 Pa. Stress sweeps were recorded at 1 Hz. Measurements were repeated twice on
independent experiments and a representative dataset is shown.

3.3. Transmission Electron Microscopy

TEM micrographs were acquired using a Philips electron microscope 208 (FEI, Hills-
boro, Oregon, OR, USA) that was equipped with a Quemesa (Olympus Soft Imaging
Solutions (Berlin, Germany) camera; images were recorded with RADIUS software; sam-
ples were prepared as described previously using phosphotungstate as a negative stain [24].

3.4. Circular Dichroism (CD)

CD spectra were recorded in a J-815 system (Jasco, Easton, MD, USA) using a 0.1 mm
quartz cuvette at 25 ◦C, with a bandwidth of 1 nm and a step size of 1 nm with 1 s integration.
Spectra shown are the average of at least five measurements (one accumulation each).

3.5. Thioflavin T Fluorescence

Samples (0.12 mL) were prepared as described above at 25 mM peptide concentration
and immediately put on wells of Greiner 96 Flat Clear-Bottom Black Polystyrene. After 4 h,
30 µL of a Thioflavin T solution (22.2 µM in 20 mM glycine-NaOH pH 8.5, 0.2 µm filtered)
was added to the wells. After 15 min, fluorescence was analyzed using a Tecan Infinite
M1000 Pro (Tecan, Milan, Italy), with an excitation wavelength of 446 nm, an emission
wavelength of 490 nm, and a bandwidth of 20 nm. Each condition was repeated twice in
triplicate. Average and standard deviations were calculated and plotted with Excel.

3.6. ATR FT-IR Spectroscopy

Hydrogel samples (50 mM) were prepared as described above for compounds 1–3,
and, after 1 h of self-assembly, they were placed atop a small piece of Silicon wafer and
dried in vacuo overnight. IR spectra were then acquired on an Affinity-1S (Shimadzu,
Milan, Italy), diamond, 4 cm−1 resolution, 240 scans).

3.7. Biocatalysis

Samples were prepared as described above, and 98 µL were immediately put in wells
of Greiner 96 U Bottom Transparent Polystyrene. Compounds 1–3 were tested at 1 mM, as
well as at higher concentrations. In particular, compound 1 was tested at 25 and 50 mM.
Hydrogels of 2 were tested at 50 mM, while hydrogels of 3 could not be tested at 50 mM due
to scattering; hence, they were probed at 25 mM. After 4 h, 2 µL of a solution of pNPA [24]
(10 mM in MeOH) was added to the wells, unless otherwise stated (i.e., for more diluted
conditions, pNPA concentration was lowered accordingly). Absorbance at 405 nm was
monitored over 1 h on a Tecan Infinite M1000 Pro (Tecan, Milan, Italy). Each condition was
repeated twice in triplicate. Kobs was calculated as previously described [24].

4. Conclusions

N-acetylation and/or C-amidation were shown to affect the self-assembly ability
and, to a minor extent, the biocatalytic performance of the heterochiral His–Phe–Phe
tripeptide [24]. All three compounds self-organized into nanofibrils, although the N-
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acetylated analogue 1 did not gel at all, and the N-acetylated and C-amidated 3 formed
irreversible hydrogels. We infer that the presence of fewer hydrogen-bonding donor groups
in 1 relative to the other compounds negatively affected its ability to interact with water
to gel. Furthermore, compounds 2 and 3 displayed an mgc corresponding to 25 mM, in
contrast with 50 mM for the parent compound, suggesting that terminal modification
increased hydrophobicity and favored hydrogelation.

In particular, C-amidated 2 was the only compound of the set to maintain the abil-
ity to form thermoreversible hydrogels, with an improvement in catalytic performance.
These data confirmed that the presence of a free carboxylic acid at the C-terminus did
not significantly assist in the catalysis performed by this tripeptide sequence. As an addi-
tional value, recent reports described a positive effect of C-amidation on the stability and
biological performance of short heterochiral peptides [36]. Future studies will focus on
other strategies to enhance the catalytic activity of the His–Phe–Phe sequence, for instance,
through co-assembly with other peptides bearing different amino acids, such as Ser or Arg,
which could mimic the catalytic triad found in hydrolases, or through peptide sequence
extension to include the same residues. For instance, addition of Arg units at the termini of
short self-assembling peptides was shown to reduce hierarchical association of fibrils and
improve gelation kinetics [37].

Supplementary Materials: The following are available online. 1H- and 13C-NMR spectra, ESI-MS
spectra, HPLC traces, and biocatalytic data of compounds 1–3.
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