187 research outputs found

    The investigation of acute optic neuritis: a review and proposed protocol

    Get PDF
    Optic neuritis is an inflammatory optic neuropathy that affects many patients with multiple sclerosis (MS) at some point during their disease course. Differentiation of acute episodes of MS-associated optic neuritis from other autoimmune and inflammatory optic neuropathies is vital for treatment choice and further patient management, but is not always straightforward. Over the past decade, a number of new imaging, laboratory and electrophysiological techniques have entered the clinical arena. To date, however, no consensus guidelines have been devised to specify how and when these techniques can be most rationally applied for the diagnostic work-up of patients with acute optic neuritis. In this article, we review the literature and attempt to formulate a consensus for the investigation of patients with acute optic neuritis, both in standard care and in research with relevance to clinical treatment trials

    Update on biomarkers in neuromyelitis optica

    Get PDF
    Neuromyelitis optica (NMO) (and NMO spectrum disorder) is an autoimmune inflammatory disease of the CNS primarily affecting spinal cord and optic nerves. Reliable and sensitive biomarkers for onset, relapse, and progression in NMO are urgently needed because of the heterogeneous clinical presentation, severity of neurologic disability following relapses, and variability of therapeutic response. Detecting aquaporin-4 (AQP4) antibodies (AQP4-IgG or NMO-IgG) in serum supports the diagnosis of seropositive NMO. However, whether AQP4-IgG levels correlate with disease activity, severity, response to therapy, or long-term outcomes is unclear. Moreover, biomarkers for patients with seronegative NMO have yet to be defined and validated. Collaborative international studies hold great promise for establishing and validating biomarkers that are useful in therapeutic trials and clinical management. In this review, we discuss known and potential biomarkers for NMO

    Evaluation of a Multiparametric Immunofluorescence Assay for Standardization of Neuromyelitis Optica Serology

    Get PDF
    Background: Neuromyelitis optica (NMO) is a severely disabling autoimmune disorder of the central nervous system, which predominantly affects the optic nerves and spinal cord. In a majority of cases, NMO is associated with antibodies to aquaporin-4 (AQP4) (termed NMO-IgG). Aims: In this study, we evaluated a new multiparametric indirect immunofluorescence (IIF) assay for NMO serology. Methods: Sera from 20 patients with NMO, 41 patients with multiple sclerosis (MS), 30 healthy subjects, and a commercial anti-AQP4 IgG antibody were tested in a commercial composite immunofluorescence assay ("Neurology Mosaic 17"; Euroimmun, Germany), consisting of five different diagnostic substrates (HEK cells transfected with AQP4, non-transfected HEK cells, primate cerebellum, cerebrum, and optic nerve tissue sections). Results: We identified AQP4 specific and non-specific fluorescence staining patterns and established positivity criteria. Based on these criteria, this kit yielded a high sensitivity (95%) and specificity (100%) for NMO and had a significant positive and negative likelihood ratio (LR+ = ∞, LR- = 0.05). Moreover, a 100% inter- and intra-laboratory reproducibility was found. Conclusions: The biochip mosaic assay tested in this study is a powerful tool for NMO serology, fast to perform, highly sensitive and specific for NMO, reproducible, and suitable for inter-laboratory standardization as required for multi-centre clinical trials

    Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients

    Get PDF
    OBJECTIVE: To assess the effect of anti-CD20 B-cell depletion with rituximab (RTX) on relapse rates in myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD). METHODS: Retrospective review of RTX-treated MOGAD patients from 29 centres in 13 countries. The primary outcome measure was change in relapse rate after starting rituximab (Poisson regression model). RESULTS: Data on 121 patients were analysed, including 30 (24.8%) children. Twenty/121 (16.5%) were treated after one attack, of whom 14/20 (70.0%) remained relapse-free after median (IQR) 11.2 (6.3-14.1) months. The remainder (101/121, 83.5%) were treated after two or more attacks, of whom 53/101 (52.5%) remained relapse-free after median 12.1 (6.3-24.9) months. In this 'relapsing group', relapse rate declined by 37% (95%CI=19-52%, p<0.001) overall, 63% (95%CI=35-79%, p = 0.001) when RTX was used first line (n = 47), and 26% (95%CI=2-44%, p = 0.038) when used after other steroid-sparing immunotherapies (n = 54). Predicted 1-year and 2-year relapse-free survival was 79% and 55% for first-line RTX therapy, and 38% and 18% for second-/third-line therapy. Circulating CD19+B-cells were suppressed to <1% of total circulating lymphocyte population at the time of 45/57 (78.9%) relapses. CONCLUSION: RTX reduced relapse rates in MOGAD. However, many patients continued to relapse despite apparent B-cell depletion. Prospective controlled studies are needed to validate these results

    Differential binding of autoantibodies to MOG isoforms in inflammatory demyelinating diseases

    Get PDF
    Objective: To analyze serum immunoglobulin G (IgG) antibodies to major isoforms of myelin oligodendrocyte glycoprotein (MOG-alpha 1-3 and beta 1-3) in patients with inflammatory demyelinating diseases. Methods: Retrospective case-control study using 378 serum samples from patients with multiple sclerosis (MS), patients with non-MS demyelinating disease, and healthy controls with MOG alpha-1-IgG positive (n = 202) or negative serostatus (n = 176). Samples were analyzed for their reactivity to human, mouse, and rat MOG isoforms with and without mutations in the extracellular MOG Ig domain (MOG-ecIgD), soluble MOG-ecIgD, and myelin from multiple species using live cell-based, tissue immunofluorescence assays and ELISA. Results: The strongest IgG reactivities were directed against the longest MOG isoforms alpha-1 (the currently used standard test for MOG-IgG) and beta-1, whereas the other isoforms were less frequently recognized. Using principal component analysis, we identified 3 different binding patterns associated with non-MS disease: (1) isolated reactivity to MOG-alpha-1/beta-1 (n = 73), (2) binding to MOG-alpha-1/beta-1 and at least one other alpha, but no beta isoform (n = 64), and (3) reactivity to all 6 MOG isoforms (n = 65). The remaining samples were negative (n = 176) for MOG-IgG. These MOG isoform binding patterns were associated with a non-MS demyelinating disease, but there were no differences in clinical phenotypes or disease course. The 3 MOG isoform patterns had distinct immunologic characteristics such as differential binding to soluble MOG-ecIgD, sensitivity to MOG mutations, and binding to human MOG in ELISA. Conclusions: The novel finding of differential MOG isoform binding patterns could inform future studies on the refinement of MOG-IgG assays and the pathophysiologic role of MOG-IgG

    The role of anti-aquaporin 4 antibody in the conversion of acute brainstem syndrome to neuromyelitis optica

    Get PDF
    Background: Acute brainstem syndrome (ABS) may herald multiple sclerosis (MS), neuromyelitis optica (NMO), or occur as an isolated syndrome. The aquaporin 4 (AQP4)-specific serum autoantibody, NMO-IgG, is a biomarker for NMO. However, the role of anti-AQP4 antibody in the conversion of ABS to NMO is unclear. Methods: Thirty-one patients with first-event ABS were divided into two groups according to the presence of anti-AQP4 antibodies, their clinical features and outcomes were retrospectively analyzed. Results: Fourteen of 31 patients (45.16 %) were seropositive for NMO-IgG. The 71.43 % of anti-AQP4 (+) ABS patients converted to NMO, while only 11.76 % of anti-AQP4 (-) ABS patients progressed to NMO. Anti-AQP4 (+) ABS patients demonstrated a higher IgG index (0.68 ± 0.43 vs 0.42 ± 0.13, p < 0.01) and Kurtzke Expanded Disability Status Scale (4.64 ± 0.93 vs 2.56 ± 0.81, p < 0.01) than anti-AQP4 (-) ABS patients. Area postrema clinical brainstem symptoms occurred more frequently in anti-AQP4 (+) ABS patients than those in anti-AQP4 (-) ABS patients (71.43 % vs 17.65 %, p = 0.004). In examination of magnetic resonance imaging (MRI), the 78.57 % of anti-AQP4 (+) ABS patients had medulla-predominant involvements in the sagittal view and dorsal-predominant involvements in the axial view. Conclusions: ABS represents an inaugural or limited form of NMO in a high proportion of anti-AQP4 (+) patients

    Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

    Get PDF
    BACKGROUND: The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. OBJECTIVE: To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. METHODS: Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). RESULTS: Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. CONCLUSION: This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients
    corecore