253 research outputs found

    Activation of the chicken Ig-β locus by the collaboration of scattered regulatory regions through changes in chromatin structure

    Get PDF
    A total of 10 B-lymphocyte-specific DNase I hypersensitive sites located in the chicken Ig-β locus were divided into four regions and combinations of deletions of these regions were carried out. A decrease in transcription of the Ig-β gene to <3% was demonstrated in cells with deletions in all four regions. The Ig-β chromatin was resistant to DNase I digestion in these cells. Thus, the collaboration is shown to convert the Ig-β chromatin from the condensed state to a relaxed state. H3 and H4 acetylation decreased to <8% but H3K4 hypermethylation was observed at the Ig-β promoter and exon 3. The collaboration of four regions had virtually no effect on CG hypomethylation in the region upstream the transcriptional start site. Accordingly, neither the DNase I general sensitive state in the Ig-β chromatin nor hyperacetylation of H3 and H4 histones in the promoter proximal region causes H3K4 di-methylation or CG hypomethylation in the promoter. From these analyses, a chromatin situation was found in which both an active state, such as enhanced H3K4 methylation, or CG hypomethylation, and an inactive state, such as DNase I resistance in the Ig-β chromatin or hypoacetylation of H3 and H4 histones in the Ig-β locus, coexist

    Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>P53 mutations are an adverse prognostic factor in esophageal cancer. P53 and KRas mutations are involved in chemo-radioresistance. Circulating anti-p53 or anti-KRas antibodies are associated with gene mutations. We studied whether anti-p53 or anti-KRas auto-antibodies were prognostic factors for response to chemoradiotherapy (CRT) or survival in esophageal carcinoma.</p> <p>Methods</p> <p>Serum p53 and KRas antibodies (abs) were measured using an ELISA method in 97 consecutive patients treated at Saint Louis University Hospital between 1999 and 2002 with CRT for esophageal carcinoma (squamous cell carcinoma (SCCE) 57 patients, adenocarcinoma (ACE) 27 patients). Patient and tumor characteristics, response to treatment and the follow-up status of 84 patients were retrospectively collected. The association between antibodies and patient characteristics was studied. Univariate and multivariate survival analyses were conducted.</p> <p>Results</p> <p>Twenty-four patients (28%) had anti-p53 abs. Abs were found predominantly in SCCE (p = 0.003). Anti-p53 abs were associated with a shorter overall survival in the univariate analysis (HR 1.8 [1.03-2.9], p = 0.04). In the multivariate analysis, independent prognostic factors for overall and progression-free survival were an objective response to CRT, the CRT strategy (alone or combined with surgery [preoperative]) and anti-p53 abs. None of the long-term survivors had p53 abs. KRas abs were found in 19 patients (23%, no difference according to the histological type). There was no significant association between anti-KRas abs and survival neither in the univariate nor in the multivariate analysis. Neither anti-p53 nor anti-KRas abs were associated with response to CRT.</p> <p>Conclusions</p> <p>Anti-p53 abs are an independent prognostic factor for esophageal cancer patients treated with CRT. Individualized therapeutic approaches should be evaluated in this population.</p

    The physiological response of seven strains of picophytoplankton to light, and its representation in a dynamic photosynthesis model

    Get PDF
    Picophytoplankton dominate the phytoplankton community in wide ocean areas and are considered efficient in the acquisition of light compared to other phytoplankton groups. To quantify their photophysiological parameters we use 3 strains of picoprokaryotes and 4 strains of picoeukaryotes. We measure the acclimated response of the exponential growth rates and chlorophyll a to carbon ratios, as well as the instantaneous response of photosynthesis rates at 5-7 light intensities. We then use a dynamic photosynthesis model (Geider, MacIntyre, and Kana 1997) and extend it with a photoinhibition term. We derive five photophysiological parameters: the maximum rate of photosynthesis (PCm), the affinity to light (αchl), the photoinhibition term (βchl), the respiration rate (resp), and the maximum chlorophyll a to carbon ratio (θmax). We show that PCm is significantly lower for picoprokaryotes than for picoeukaryotes and increases significantly with increasing cell size. In turn, αchl decreases significantly with increasing maximum growth rate (µmax). The latter finding is contrary to a previously reported relationship for phytoplankton, but agrees with theoretical assumptions based on size. The higher efficiency in light acquisition gives picoprokaryotes an advantage in light limited environments at the expense of their maximum growth rate. In addition, our results indicate that the accumulation of long-term damage through photoinhibition during acclimation is not well represented by the dynamic photosynthesis model. Hence, we would recommend to distinguish between the effects of irreversible damage (on a time scale of days) on growth rates and of reversible damage (on a time scale of minutes) on photosynthesis rates

    Satellite Derived Forest Phenology and Its Relation with Nephropathia Epidemica in Belgium

    Get PDF
    The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission

    Experimental approaches to evaluate activities of cytochromes P450 3A

    Get PDF
    Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b5, and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b5. The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro

    ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA

    Get PDF
    The ZFP36/Tis11 family of zinc-finger proteins regulate cellular processes by binding to adenine uridine rich elements in the 3′ untranslated regions of various mRNAs and promoting their degradation. We show here that ZFP36L1 expression is largely extinguished during the transition from B cells to plasma cells, in a reciprocal pattern to that of ZFP36 and the plasma cell transcription factor, BLIMP1. Enforced expression of ZFP36L1 in the mouse BCL1 cell line blocked cytokine-induced differentiation while shRNA-mediated knock-down enhanced differentiation. Reconstruction of regulatory networks from microarray gene expression data using the ARACNe algorithm identified candidate mRNA targets for ZFP36L1 including BLIMP1. Genes that displayed down-regulation in plasma cells were significantly over-represented (P = <0.0001) in a set of previously validated ZFP36 targets suggesting that ZFP36L1 and ZFP36 target distinct sets of mRNAs during plasmacytoid differentiation. ShRNA-mediated knock-down of ZFP36L1 in BCL1 cells led to an increase in levels of BLIMP1 mRNA and protein, but not for mRNAs of other transcription factors that regulate plasmacytoid differentiation (xbp1, irf4, bcl6). Finally, ZFP36L1 significantly reduced the activity of a BLIMP1 3′ untranslated region-driven luciferase reporter. Taken together, these findings suggest that ZFP36L1 negatively regulates plasmacytoid differentiation, at least in part, by targeting the expression of BLIMP1

    Progress in melanoma modeling in vitro

    Get PDF
    Melanoma is one of the most studied neoplasia, although laboratory techniques used for investigating this tumor are not fully reliable. Animal models may not predict the human response due to differences in skin physiology and immunity. In addition, international guidelines recommend to develop processes that contribute to the reduction, refinement and replacement of animals for experiments (3Rs). Adherent cell culture has been widely used for the study of melanoma to obtain important information regarding melanoma biology. Nonetheless, these cells grow in adhesion on the culture substrate which differs considerably from the situation in vivo. Melanoma grows in a 3D spatial conformation where cells are subjected to a heterogeneous exposure to oxygen and nutrient. In addition, cell-cell and cell-matrix interaction play a crucial role in the pathobiology of the tumor as well as in the response to therapeutic agents. To better study melanoma new techniques, including spherical models, tumorospheres, and melanoma skin equivalents have been developed. These 3D models allow to study tumors in a microenvironment that is more close to the in vivo situation, and are less expensive and time consuming than animal studies. This review will also describe the new technologies applied to skin reconstructs such as organ-on-a-chip that allows skin perfusion through microfluidic platforms. 3D in vitro models, based on the new technologies, are becoming more sophisticated, representing at a great extent the in vivo situation, the "perfect" model that will allow less involvement of animals up to their complete replacement, is still far from being achieved. This article is protected by copyright. All rights reserved
    corecore