332 research outputs found

    Ceftolozane/Tazobactam for Treatment of Severe ESBL-Producing Enterobacterales Infections: A Multicenter Nationwide Clinical Experience (CEFTABUSE II Study)

    Get PDF
    Background. Few data are reported in the literature about the outcome of patients with severe extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) infections treated with ceftolozane/tazobactam (C/T), in empiric or definitive therapy.Methods. A multicenter retrospective study was performed in Italy (June 2016-June 2019). Successful clinical outcome was defined as complete resolution of clinical signs/symptoms related to ESBL-E infection and lack of microbiological evidence of infection. The primary end point was to identify predictors of clinical failure of C/T therapy.Results. C/T treatment was documented in 153 patients: pneumonia was the most common diagnosis (n = 46, 30%), followed by 34 cases of complicated urinary tract infections (22.2%). Septic shock was observed in 42 (27.5%) patients. C/T was used as empiric therapy in 46 (30%) patients and as monotherapy in 127 (83%) patients. Favorable clinical outcome was observed in 128 (83.7%) patients; 25 patients were considered to have failed C/T therapy. Overall, 30-day mortality was reported for 15 (9.8%) patients. At multivariate analysis, Charlson comorbidity index >4 (odds ratio [OR], 2.3; 95% confidence interval [CI], 1.9-3.5; P = .02), septic shock (OR, 6.2; 95% CI, 3.8-7.9; P < .001), and continuous renal replacement therapy (OR, 3.1; 95% CI, 1.9-5.3; P = .001) were independently associated with clinical failure, whereas empiric therapy displaying in vitro activity (OR, 0.12; 95% CI, 0.01-0.34; P < .001) and adequate source control of infection (OR, 0.42; 95% CI, 0.14-0.55; P < .001) were associated with clinical success.Conclusions. Data show that C/T could be a valid option in empiric and/or targeted therapy in patients with severe infections caused by ESBL-producing Enterobacterales. Clinicians should be aware of the risk of clinical failure with standard-dose C/T therapy in septic patients receiving CRRT

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Impact of a Multistep Bundles Intervention in the Management and Outcome of Gram-Negative Bloodstream Infections: A Single-Center "Proof-of-Concept" Study

    No full text
    Background: This is a "proof-of-concept" study aiming to evaluate the impact of a multistep bundles intervention in the management and outcomes of patients with gram-negative bloodstream infections (GN-BSIs). Methods: This was a single-center, quasi-experimental design study. In the pre-phase (January 2019 to May 2020), patients were retrospectively enrolled. During the post-phase (June 2020 to September 2021), all patients were prospectively enrolled in a nonmandatory 3-step bundles intervention arm including (i) step 1: imaging to detect deep foci of infection, follow-up blood cultures and procalcitonin monitoring; (ii) step 2: early targeted antibiotic treatment and surgical source control; (iii) step 3: discontinuation of antibiotics within 7-10 days in case of uncomplicated BSI. Patients were followed up to 28 days from BSI onset. The primary outcome was 28-day mortality. Results: A total of 271 patients were enrolled: 127 and 144 in the pre- vs post-phase, respectively. Full application of step 1 (67% vs 42%; P < .001), step 2 (83% vs 72%; P = .031), and step 3 (54% vs 2%; P < .001) increased in the post-phase. Overall, the intervention reduced 28-day mortality (22% vs 35%, respectively; P = .016) and the median duration of total (11 vs 15 days; P < .001) and targeted (8 vs 12 days; P = .001) antibiotic therapy. Finally, the multivariate Cox regression confirmed the independent protective effect of adherence to step 1 (adjusted hazard ratio [aHR], 0.36; 95% CI, 0.20-0.63) and step 2 (aHR, 0.48; 95% CI, 0.29-0.81) on risk of 28-day mortality. Conclusions: Clinical management and outcomes of patients with GN-BSIs may be improved by providing a pre-established multistep bundles interventionBackground This is a "proof-of-concept" study aiming to evaluate the impact of a multistep bundles intervention in the management and outcomes of patients with gram-negative bloodstream infections (GN-BSIs). Methods This was a single-center, quasi-experimental design study. In the pre-phase (January 2019 to May 2020), patients were retrospectively enrolled. During the post-phase (June 2020 to September 2021), all patients were prospectively enrolled in a nonmandatory 3-step bundles intervention arm including (i) step 1: imaging to detect deep foci of infection, follow-up blood cultures and procalcitonin monitoring; (ii) step 2: early targeted antibiotic treatment and surgical source control; (iii) step 3: discontinuation of antibiotics within 7-10 days in case of uncomplicated BSI. Patients were followed up to 28 days from BSI onset. The primary outcome was 28-day mortality. Results A total of 271 patients were enrolled: 127 and 144 in the pre- vs post-phase, respectively. Full application of step 1 (67% vs 42%; P < .001), step 2 (83% vs 72%; P = .031), and step 3 (54% vs 2%; P < .001) increased in the post-phase. Overall, the intervention reduced 28-day mortality (22% vs 35%, respectively; P = .016) and the median duration of total (11 vs 15 days; P < .001) and targeted (8 vs 12 days; P = .001) antibiotic therapy. Finally, the multivariate Cox regression confirmed the independent protective effect of adherence to step 1 (adjusted hazard ratio [aHR], 0.36; 95% CI, 0.20-0.63) and step 2 (aHR, 0.48; 95% CI, 0.29-0.81) on risk of 28-day mortality. Conclusions Clinical management and outcomes of patients with GN-BSIs may be improved by providing a pre-established multistep bundles intervention.A multi-step bundles strategy for management of Gram-negative bloodstream infections was established in our hospital. It was effective in reducing mortality, duration of antibiotic treatment and adverse events to antibiotics, without increasing the risk of recurrence/relapse of infection

    Real life experience on the use of Remdesivir in patients admitted to COVID-19 in two referral Italian hospital: a propensity score matched analysis

    No full text
    : Remdesivir (RDV) was the first Food and Drug Administration (FDA)-approved medication for COVID-19, with discordant data on efficacy in reducing mortality risk and disease progression. In the context of a dynamic and rapidly changing pandemic landscape, the utilization of real-world evidence is of utmost importance. The objective of this study is to evaluate the impact of RDV on patients who have been admitted to two university referral hospitals in Italy due to COVID-19. All patients older than 18 years and hospitalized at two different universities (Bari and Palermo) were enrolled in this study. To minimize the effect of potential confounders, we used propensity score matching with one case (Remdesivir) and one control that never experienced this kind of intervention during hospitalization. Mortality was the primary outcome of our investigation, and it was recorded using death certificates and/or medical records. Severe COVID-19 was defined as admission to the intensive care unit or a qSOFAscore ≄ 2 or CURB65scores ≄ 3. After using propensity score matching, 365 patients taking Remdesivir and 365 controls were included. No significant differences emerged between the two groups in terms of mean age and percentage of females, while patients taking Remdesivir were less frequently active smokers (p < 0.0001). Moreover, the patients taking Remdesivir were less frequently vaccinated against COVID-19. All the other clinical, radiological, and pharmacological parameters were balanced between the two groups. The use of Remdesivir in our cohort was associated with a significantly lower risk of mortality during the follow-up period (HR 0.56; 95% CI 0.37-0.86; p = 0.007). Moreover, RDV was associated with a significantly lower incidence of non-invasive ventilation (OR 0.27; 95% CI 0.20-0.36). Furthermore, in the 365 patients taking Remdesivir, we observed two cases of mild renal failure requiring a reduction in the dosage of Remdesivir and two cases in which the physicians decided to interrupt Remdesivir for bradycardia and for QT elongation. Our study suggests that the use of Remdesivir in hospitalized COVID-19 patients is a safe therapy associated with improved clinical outcomes, including halving of mortality and with a reduction of around 75% of the risk of invasive ventilation. In a constantly changing COVID-19 scenario, ongoing research is necessary to tailor treatment decisions based on the latest scientific evidence and optimize patient outcomes

    Mortality Attributable to Bloodstream Infections Caused by Different Carbapenem-Resistant Gram-Negative Bacilli: Results From a Nationwide Study in Italy (ALARICO Network)

    No full text
    Background. Our aim was to analyze mortality attributable to carbapenem-resistant (CR) gram-negative bacilli (GNB) in patients with bloodstream infections (BSIs).Methods. Prospective multicentric study including patients with GNB-BSI from 19 Italian hospitals (June 2018-January 2020). Patients were followed-up to 30 days. Primary outcomes were 30-day mortality and attributable mortality. Attributable mortality was calculated in the following groups: Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales, metallo-beta-lactamases (MBL)-producing Enterobacterales, CR-Pseudomonas aeruginosa (CRPA), CR-Acinetobacter baumannii (CRAB). A multivariable analysis with hospital fixed-effect was built to identify factors associated with 30-day mortality. Adjusted OR (aORs) were reported. Attributable mortality was calculated according to the DRIVE-AB Consortium.Results. Overall, 1276 patients with monomicrobial GNB BSI were included: 723/1276 (56.7%) carbapenem-susceptible (CS)GNB, 304/1276 (23.8%) KPC-, 77/1276 (6%) MBL-producing CRE, 61/1276 (4.8%) CRPA, and 111/1276 (8.7%) CRAB BSI. Thirty-day mortality in patients with CS-GNB BSI was 13.7% compared to 26.6%, 36.4%, 32.8% and 43.2% in patients with BSI by KPC-CRE, MBL-CRE, CRPA and CRAB, respectively (P <.001). On multivariable analysis, age, ward of hospitalization, SOFA score, and Charlson Index were factors associated with 30-day mortality, while urinary source of infection and early appropriate therapy resulted protective factors. Compared to CS-GNB, MBL-producing CRE (aOR 5.86, 95% CI 2.72-12.76), CRPA (aOR 1.99, 95% CI 1.48-5.95) and CRAB (aOR 2.65, 95% CI 1.52-4.61) were significantly associated with 30-day mortality. Attributable mortality rates were 5% for KPC-, 35% for MBL, 19% for CRPA, and 16% for CRAB.Conclusions. In patients with BSIs, carbapenem-resistance is associated with an excess of mortality, with MBL-producing CRE carrying the highest risk of death
    • 

    corecore