36 research outputs found

    Toward an Understanding of Synergies and Trade-Offs Between Water, Energy, and Food SDG Targets

    Get PDF
    Achieving the targets set out in the UN Sustainable Development Goals (SDG) will require committed efforts by nations and organizations over the coming decade. To determine which actions work most harmoniously within funding, infrastructure development, and implementation of three closely aligned goals, we conducted an assessment to identify where the greatest synergies may occur and where conflicting resource needs create trade-offs that may threaten SDG success. The SDGs each have several targets that need to be realized for the goal to be reached. In the present study, we developed a methodology where each target of the SDG 2 (food), 6 (water), and 7 (energy) was analyzed for its input requirements, infrastructure needs, and the risks and benefits for the provision of ecosystem services. Then the targets were compared pairwise and a total score of interaction was calculated to determine different levels of synergies and trade-offs for every pair. In some cases targets were mutually supportive, in other cases there were no interactions among the targets, and for some areas the targets were in conflict with each other. For example, targets 2.5 (maintain genetic diversity), 6.5 (implement integrated water resources management) and 7.a (enhance international cooperation to facilitate access to clean energy) have no conflicts with other targets and have different levels of synergies with most of the other targets. On the contrary, various targets of SDG 2, and especially the target 2.b (correct and prevent trade restrictions), are in slight conflict with other targets by potentially overusing resources needed by other targets or threatening ecosystem services. Our approach confirms the general belief that SDG 6 (water) has the highest number of potential synergies (a total of 124). Thus, achieving the water targets will make it continuously easier to achieve other targets. While the results may need to be adapted for a specific locality or country, overall they provide an improved understanding of the interactions between the targets. The value of the study lies in the quantitative methodology as it can be used as a replicable analysis for any level of work on SDG implementation

    Reserves and trade jointly determine exposure to food supply shocks

    Get PDF
    While a growing proportion of global food consumption is obtained through international trade, there is an ongoing debate on whether this increased reliance on trade benefits or hinders food security, and specifically, the ability of global food systems to absorb shocks due to local or regional losses of production. This paper introduces a model that simulates the short-term response to a food supply shock originating in a single country, which is partly absorbed through decreases in domestic reserves and consumption, and partly transmitted through the adjustment of trade flows. By applying the model to publicly-available data for the cereals commodity group over a 17 year period, we find that differential outcomes of supply shocks simulated through this time period are driven not only by the intensification of trade, but as importantly by changes in the distribution of reserves. Our analysis also identifies countries where trade dependency may accentuate the risk of food shortages from foreign production shocks; such risk could be reduced by increasing domestic reserves or importing food from a diversity of suppliers that possess their own reserves. This simulation-based model provides a framework to study the short-term, nonlinear and out-of-equilibrium response of trade networks to supply shocks, and could be applied to specific scenarios of environmental or economic perturbations

    Green and blue water demand from large-scale land acquisitions in Africa

    No full text
    International audienceIn the last decade, more than 22 million ha of land have been contracted to large-scale land acquisitions in Africa, leading to increased pressures, competition, and conflicts over freshwater resources. Currently, 3% of contracted land is in production, for which we model site-specific water demands to indicate where freshwater appropriation might pose high socioenvironmental challenges. We use the dynamic global vegetation model Lund-Potsdam-Jena managed Land to simulate green (precipitation stored in soils and consumed by plants through evapotranspiration) and blue (extracted from rivers, lakes, aquifers, and dams) water demand and crop yields for seven irrigation scenarios, and compare these data with two baseline scenarios of staple crops representing previous water demand. We find that most land acquisitions are planted with crops that demand large volumes of water (\textgreater 9,000 m(3) . ha(-1)) like sugarcane, jatropha, and eucalyptus, and that staple crops have lower water requirements (\textless 7,000 m(3) . ha(-1)). Blue water demand varies with irrigation system, crop choice, and climate. Even if the most efficient irrigation systems were implemented, 18% of the land acquisitions, totaling 91,000 ha, would still require more than 50% of water from blue water sources. These hotspots indicate areas at risk for transgressing regional constraints for freshwater use as a result of overconsumption of blue water, where socioenvironmental systems might face increased conflicts and tensions over water resources

    Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    Get PDF
    International audienceIrrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18% from climate change alone if irrigation systems and conveyance are not improved ( 4 and 18% with 2 degrees C global warming combined with the full CO2-fertilization effect and 5 degrees C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to compensate to some degree for the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they implement some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. Nevertheless, water scarcity may pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios. The results presented in this study point to the necessity of performing further research on climate-friendly agro-ecosystems in order to assess, on the one hand, their degree of resilience to climate shocks and, on the other hand, their adaptation potential when confronted with higher temperatures and changes in water availability

    Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    Get PDF
    International audienceIn the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land – LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanis-tically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediter-ranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions , the influence of management practices and climate change impacts

    What ecologists should know before using land use/cover change projections for biodiversity and ecosystem service assessments

    No full text
    International audienceScenarios of biodiversity and ecosystem services (BES) are key for decision-makers to understand the consequences of future environmental change on BES. Though a major driver of terrestrial biodiversity loss, land use and land cover changes (LUCC) have been largely overlooked in previous BES assessments. But ecologists lack practical guidance for the general use of LUCC projections. We review the practices in use in LUCC-driven BES assessments and summarize the questions ecologists should address before using LUCC projections. LUCC-driven BES scenarios rely on a substantial set of different socioeconomic storylines (> 200 for 166 papers). Studies explore different futures, but generally concentrate on projections obtained from a single LUCC model. The rationale regarding time horizon, spatial resolution, or the set of storylines used is rarely made explicit. This huge heterogeneity and low transparency regarding the what, why, and how of using LUCC projections for the study of BES futures could discourage researchers from engaging in the design of such biodiversity scenarios. Our results call on those using LUCC projections to more systematically report on the choices they make when designing LUCC-based BES scenarios (e.g. time horizon, spatial and thematic resolutions, scope of contrasted futures). Beyond the improvement of reliability, reproducibility, and comparability of these scenarios, this could also greatly benefit others wanting to use the same LUCC projections, and help land use modellers better meet the needs of their intended audiences. The uncertainties in LUCC-driven BES futures should also be explored more comprehensively, including different socioeconomic storylines and different LUCC models, as recommended in studies dealing with climate-driven BES futures
    corecore