396 research outputs found

    Structure of the capsular polysaccharide of the KPC-2-producing Klebsiella pneumoniae strain KK207-2 and assignment of the glycosyltransferases functions

    Get PDF
    Klebsiella pneumoniae strain KK207-2 was isolated in 2010 froma bloodstreaminfection of an inpatient at an Italian hospital. It was previously found to produce the KPC-2 carbapenemase and to belong to clade 1 of sequence type 258. Genotyping of the conserved wzi and wzc genes from strain KK207-2 yielded contrasting results: the wzc-based method assigned the cps207\u20132 to a new K-type, while the wzi-based method assigned it to the known K41 K-type. In order to resolve this contradiction, the capsular polysaccharide of K. pneumoniae KK207-2 was purified and its structure determined by using GLC-MS of appropriate carbohydrate derivatives, ESI-MS of both partial hydrolysis and Smith degradation derived oligosaccharides, andNMR spectroscopy of oligosaccharides, and the lithium degraded, native and de-O-acetylated polysaccharide. All the collected data demonstrated the following repeating unit for the K. pneumoniae KK207-2 capsular polysaccharide: OAc 6 [3)-\u3b2-D-Gal-(1-4)-\u3b2-D-Glc-(1-]n 4 I 1 \u3b2-D-Glcp-(1-6)-\u3b1-D-Glcp-(1-4)-\u3b2-D-GlcpA-(1-6)-\u3b1-D-Glcp The polysaccharide contains about 0.60 acetyl groups per repeating unit on C6 of the Gal residue. The reactions catalysed by each glycosyltransferase in the cpsKK207-2 gene cluster were assigned on the basis of structural homology with other Klebsiella K antigens

    Space Flight Effects on Antioxidant Molecules in Dry Tardigrades: The TARDIKISS Experiment

    Get PDF
    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research

    Antioxidant Response during the Kinetics of Anhydrobiosis in Two Eutardigrade Species

    Get PDF
    Anhydrobiosis, a peculiar adaptive strategy existing in nature, is a reversible capability of organisms to tolerate a severe loss of their body water when their surrounding habitat is drying out. In the anhydrobiotic state, an organism lacks all dynamic features of living beings since an ongoing metabolism is absent. The depletion of water in the anhydrobiotic state increases the ionic concentration and the production of reactive oxygen species (ROS). An imbalance between the increased production of ROS and the limited action of antioxidant defences is a source of biomolecular damage and can lead to oxidative stress. The deleterious effects of oxidative stress were demonstrated in anhydrobiotic unicellular and multicellular organisms, which counteract the effects using efficient antioxidant machinery, mainly represented by ROS scavenger enzymes. To gain insights into the dynamics of antioxidant patterns during the kinetics of the anhydrobiosis of two tardigrade species, Paramacrobiotus spatialis and Acutuncus antarcticus, we investigated the activity of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase) and the amount of non-enzymatic antioxidants (glutathione) in the course of rehydration. In P. spatialis, the activity of catalase increases during dehydration and decreases during rehydration, whereas in A. antarcticus, the activity of superoxide dismutase decreases during desiccation and increases during rehydration. Genomic varieties, different habitats and geographical regions, different diets, and diverse evolutionary lineages may have led to the specialization of antioxidant strategies in the two specie

    Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis

    Get PDF
    Background: Dysbiosis has been recently demonstrated in patients with ankylosing spondylitis (AS) but its implications in the modulation of intestinal immune responses have never been studied. The aim of this study was to investigate the role of ileal bacteria in modulating local and systemic immune responses in AS. Methods: Ileal biopsies were obtained from 50 HLA-B27+ patients with AS and 20 normal subjects. Silver stain was used to visualise bacteria. Ileal expression of tight and adherens junction proteins was investigated by TaqMan real-time (RT)-PCR and immunohistochemistry. Serum levels of lipopolysaccharide (LPS), LPS-binding protein (LPS-BP), intestinal fatty acid-BP (iFABP) and zonulin were assayed by ELISA. Monocyte immunological functions were studied in in vitro experiments. In addition the effects of antibiotics on tight junctions in human leukocyte antigen (HLA)-B27 transgenic (TG) rats were assessed. Results: Adherent and invasive bacteria were observed in the gut of patients with AS with the bacterial scores significantly correlated with gut inflammation. Impairment of the gut vascular barrier (GVB) was also present in AS, accompanied by significant upregulation of zonulin, and associated with high serum levels of LPS, LPS-BP, iFABP and zonulin. In in vitro studies zonulin altered endothelial tight junctions while its epithelial release was modulated by isolated AS ileal bacteria. AS circulating monocytes displayed an anergic phenotype partially restored by ex vivo stimulation with LPS+sCD14 and their stimulation with recombinant zonulin induced a clear M2 phenotype. Antibiotics restored tight junction function in HLA-B27 TG rats. Conclusions: Bacterial ileitis, increased zonulin expression and damaged intestinal mucosal barrier and GVB, characterises the gut of patients with AS and are associated with increased blood levels of zonulin, and bacterial products. Bacterial products and zonulin influence monocyte behaviour

    Intraventricular Meningiomas: Clinical-Pathological and Genetic Features of a Monocentric Series

    Get PDF
    Intraventricular meningiomas (IVMs) are rare (0.5-5%) and usually low-grade (90% grade I) brain neoplasms. Their recurrence rate is lower than that of extra-axial meningiomas, but their surgical resection can be burdened with life-threatening complications, which represent the major cause of the reported 4% mortality. The aim of this study is to characterize the molecular portrait of IVMs to identify potential therapeutic targets. For this, we explored mutations and copy number variations (CNV) of 409 cancer-related genes and tumor mutational burden (TMB) of six cases, using next-generation sequencing. Five IVMs were grade I and one was grade II; none recurred, in spite of partial surgical resection in one case. NF2 mutation was the only recurring alteration and was present in three of the six IVMs, in association with SMARCB1 mutation in one case. None of the cases was hypermutated (TMB > 10 mutations/Mb). NF2-mutant progressing or recurring IVMs could potentially be treated with targeted therapies applied to other NF2-mutant tumors, as an alternative to surgery or radiosurgery, while in view of their low TMB they are unlikely candidates to immune check-point inhibition

    Genomic Database Analysis of Uterine Leiomyosarcoma Mutational Profile

    Get PDF
    Uterine Leiomyosarcoma (uLMS) is by far the most common type of uterine sarcoma, characterized by an aggressive clinical course, a heterogeneous genetic profile and a very scarce response to cytotoxic chemotherapy. The genetic make-up of uLMS is an area of active study that could provide essential cues for the development of new therapeutic approaches. A total of 216 patients with uLMS from cBioPortal and AACR-GENIE databases were included in the study. The vast majority of patients (81%) carried at least one mutation in either TP53, RB1, ATRX or PTEN. The most frequently mutated gene was TP53, with 61% of the patients harboring at least one mutation, followed by RB1 at 48%. PTEN alteration was more frequent in metastases than in primary lesions, consistent with a later acquisition during tumor progression. There was a significant trend for TP53 and RB1 mutations to occur together, while both TP53 and RB1 were mutually exclusive with respect to CDKN2A/B inactivation. Overall survival did not show significant correlation with the mutational status, even if RB1 mutation emerged as a favorable prognostic factor in the TP53-mutant subgroup. This comprehensive analysis shows that uLMS is driven almost exclusively by the inactivation of tumor suppressor genes and suggests that future therapeutic strategies should be directed at targeting the main genetic drivers of uLMS oncogenesis

    Peptides from Amaranth controlled the NF-κB pathway activation on epithelial cells and suppressed intestinal inflammation

    Get PDF
    Biological, nutritional and health benefits of amaranth have been highlighted in the last years. Proteins of amaranth exert anti-hypertensive, anti-oxidant, anti-thrombotic and anti-proliferative effects. The aim of this study was to analyze the anti-inflammatory effect of peptides from amaranth on NF-kB-intracellular pathway activation in intestinal epithelial cells, and in experimental intestinal inflammation, such as colitis and food allergy. Colon cell lines (Caco-2 and Caco-luc) were cultured with flagellin and amaranth peptides. CCL20-expression was evaluated by qPCR and NF-κB modulation was evaluated by light emission and qPCR, along with p65-nuclear traslocation. In vivo studies included the oral administration of a formulation containing the peptide during the allergic sensitization or the colitis induction phase in Balb/c mice. Treatment efficacy was in vivo and in vitro evaluated. We found several peptides with anti-inflammatory capacity and we selected that with the highest ability to suppress cell activation (decrease in CCL20 and light emission p<0.05). In vivo studies showed, an amelioration of the clinical score (p<0.01) in the food allergy mouse model, with inhibition of specific-IgE secretion (p<0.05) and negativitization of the cutaneous test (mean increase in footpad thickness control: 0.6mm vs peptide-treated: 0.3mm; p<0.05); intestinal nf-kb gene expression was reduced (fold change=3; p<0.01) along with up-regulation of tfg-b and foxp3. In the colitis mouse model, we found a decrease of the histologic score with a decrease expression and production of pro-inflammatory cytokines (IL-1b, TNF and IFNg, p<0.05) and a decrease in the myeloperoxidase activity in the peptide-treated group compared to control (p<0.05). NF-κB pathway was also abrogated in the gut. In conclusion, our findings indicated that peptides from amaranth endowed mucosal anti-inflammatory properties that suppressed the intestinal activation of NF-kB in Th1- and Th2-mediated inflammation. These findings led us to propose that this peptide might be included in the composition of a functional foo

    Enterocyte superoxide dismutase 2 deletion drives obesity

    Get PDF
    Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese phenotype was rescued when fed an essential fatty acid-deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal Sod2 mRNA levels and obesity features appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal Sod2 levels, PLA2 activity, and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder

    Secondary Autochthonous Outbreak of Chikungunya, Southern Italy, 2017

    Get PDF
    In 2017, a chikungunya outbreak in central Italy later evolved into a secondary cluster in southern Italy, providing evidence of disease emergence in new areas. Officials have taken action to raise awareness among clinicians and the general population, increase timely case detection, reduce mosquito breeding sites, and promote mosquito bite prevention
    • …
    corecore