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Abstract

Klebsiella pneumoniae strain KK207-2 was isolated in 2010 from a bloodstream infection of an 

inpatient at an Italian hospital. It was previously found to produce the KPC-2 carbapenemase and to 

belong to clade 1 of sequence type 258. Genotyping of the conserved wzi and wzc genes from strain 

KK207-2 yielded contrasting results: the wzc-based method assigned the cps207-2 to a new K-type, 

while the wzi-based method assigned it to the known K41 K-type. In order to resolve this contradiction, 

the capsular polysaccharide of K. pneumoniae KK207-2 was purified and its structure determined by 

using GLC-MS of appropriate carbohydrate derivatives, ESI-MS of both partial hydrolysis and Smith 

degradation derived oligosaccharides, and NMR spectroscopy of oligosaccharides, and the lithium 

degraded, native and de-O-acetylated polysaccharide. All the collected data demonstrated the following 

repeating unit for the K. pneumoniae KK207-2 capsular polysaccharide:

OAc

6

[3)-β-D-Gal-(14)-β-D-Glc-(1]n
4

1

β-D-Glcp-(16)-α-D-Glcp-(14)-β-D-GlcpA-(16)-α-D-Glcp

The polysaccharide contains about 0.60 acetyl groups per repeating unit on C6 of the Gal residue. The 

reactions catalysed by each glycosyltransferase in the cpsKK207-2 gene cluster were assigned on the basis 

of structural homology with other Klebsiella K antigens.
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Abstract

Klebsiella pneumoniae strain KK207-2 was isolated in 2010 from a bloodstream infection of an 

inpatient at an Italian hospital. It was previously found to produce the KPC-2 carbapenemase and to 

belong to clade 1 of sequence type 258. Genotyping of the conserved wzi and wzc genes from strain 

KK207-2 yielded contrasting results: the wzc-based method assigned the cps207-2 to a new K-type, 

while the wzi-based method assigned it to the known K41 K-type. In order to resolve this 

contradiction, the capsular polysaccharide of K. pneumoniae KK207-2 was purified and its structure 

determined by using GLC-MS of appropriate carbohydrate derivatives, ESI-MS of both partial 

hydrolysis and Smith degradation derived oligosaccharides, and NMR spectroscopy of 

oligosaccharides, and the lithium degraded, native and de-O-acetylated polysaccharide. All the 

collected data demonstrated the following repeating unit for the K. pneumoniae KK207-2 capsular 

polysaccharide:

OAc

6

[3)-β-D-Gal-(14)-β-D-Glc-(1]n
4

1

β-D-Glcp-(16)-α-D-Glcp-(14)-β-D-GlcpA-(16)-α-D-Glcp

The polysaccharide contains about 0.60 acetyl groups per repeating unit on C6 of the Gal residue. 

The reactions catalysed by each glycosyltransferase in the cpsKK207-2 gene cluster were assigned on 

the basis of structural homology with other Klebsiella K antigens.

Keywords: Klebsiella pneumoniae Sequence Type 258; strain KK207-2; capsular polysaccharide 

structure; NMR; ESI-MS; glycosyltransferases.
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1. Introduction

Klebsiella pneumoniae is a Gram-negative encapsulated rod which is mostly responsible for 

nosocomial infections in immunocompromised patients, but can also cause severe community-

acquired infections [1]. The clinical scenario has worsened during recent years, with the global 

emergence and dissemination of K. pneumoniae strains resistant to carbapenems (CR-Kp), which 

are among the last-resort antibiotics for treatment of infections caused by multiresistant Gram-

negative rods. Production of carbapenemase of different types (e. g. KPC, VIM, NDM, OXA-48) is 

the major carbapenem resistance mechanism among CR-Kp. KPC-type carbapenemases are among 

the most prevalent and challenging carbapenemases, since they can degrade virtually all -lactam 

antibiotics including carbapenems [2]. Dissemination of KPC-producing strains of K. pneumoniae 

(KPC-Kp) has been sustained by the expansion of various clones, with members of clonal group 

(CG) 258 being likely the most successful and widespread. CG258 includes strains of the sequence 

type (ST) 258 and some related variants [2]. Infections caused by KPC-Kp strains are challenging in 

healthcare settings, where they spread rapidly and are associated with significant morbidity and 

mortality [2].

K. pneumoniae strains can be classified based on serotyping of two different types of antigens 

exposed on the bacterial surface: O antigen, the outer polysaccharide chain of the 

lipopolysaccharide, and the K antigen, the capsule. K. pneumoniae produces approximately 80 

structurally different capsular polysaccharides (CPS, or K antigen) which are recognized as 

virulence factors and confer different antigenic properties within the same species, with relevant 

consequences to bacterial virulence. Although serotyping of K antigen has been extensively used to 

classify K. pneumoniae strains, genotyping of the conserved wzi [3] and wzc [4] genes has recently 

been developed to establish the K-type. Moreover, Pan et al. [5] carried out an extended analysis of 

the sequences of the cps clusters from strains belonging to 79 different K types, identifying more 

than 1500 different genes that were grouped into 361 homology groups. Despite this high number 

of different CPSs expressed by K. pneumoniae strains, capsular variations are limited among KPC-

Kp isolates, due to their clonal origin.

Genotyping of KPC-Kp isolates belonging to ST258 [6, 7] identified the presence of at least two 

lineages, indicated as clade I and clade II, which differ from each other primarily in the cps gene 

cluster (named cps-1 and cps-2 gene cluster, respectively) and are novel with respect to those 

described by Pan et al [5]. Regarding cps-1, the results obtained with the two genotyping methods 

were not in agreement with each other: the wzc-based method [4] assigned cps-1 to a new K-type, 

while the wzi-based method [3] associated it to the already known K41 K-type. However, the cps-1 
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cluster does not contain the genes for the biosynthesis of rhamnose, thus suggesting a chemical 

structure at least partially different from K41.

The present work reports the primary structure of the CPS produced by K. pneumoniae KK207-2 

[6], a clade I representative, determined by using GLC-MS of appropriate carbohydrate derivatives, 

ESI-MS of both partial hydrolysis and Smith degradation derived oligosaccharides, and NMR 

spectroscopy of oligosaccharides, lithium degraded CPS, and the native and de-O-acetylated CPS. 

Moreover, taking advantage of the sequenced cps207-2 gene cluster [6], and of the structural 

knowledge gained in the present investigation, each glycosyltransferase (GT) in the CPS gene 

cluster was assigned to the corresponding catalyzed reaction.

2. Materials and methods

2.1. Bacterial strain, capsular polysaccharide production and purification

The strain of Klebsiella pneumoniae KK207-2 was isolated in 2010 from a bloodstream 

infection of an inpatient at an Italian hospital, and was previously described to produce the KPC-2 

carbapenemase and to belong to ST258 [6]. Bacterial cells were grown on 25 Worfel-Ferguson agar 

plates for 4 days at 30°C. The bacterial lawn was collected with 0.9 % NaCl (about 3 mL per dish), 

gently stirred at 10 °C for 2 h, centrifuged at 22400 x g at 4 °C for 30 min to separate the cells from 

the supernatant which was precipitated with 4 vol of cold ethanol. The precipitated material was 

recovered by centrifugation at 1900 x g at 4 °C for 30 min, dissolved in water, dialyzed first against 

0.1 M NaCl and then water, taken to pH = 6.9, filtered (Millipore membranes 0.45 μm) and 

lyophilized. The bacterial cells recovered in the pellet of the first centrifugation were suspended in a 

2% phenol solution at 10 °C for 2 h, centrifuged at 22400 x g at 4 °C for 30 min and the supernatant 

was treated as the one reported above. The purified capsular polysaccharide was named CPS 

KK207-2.

2.2. General procedures

Native and permethylated oligo- and polysaccharides were hydrolysed with 2 M trifluoroacetic 

acid (TFA) at 125 °C for 1 h. Alditol acetates were prepared as previously described [8]. TMS 

methyl glycosides were obtained by derivatization with the reagent Sylon™ HTP (Sigma) after 

methanolysis of the polysaccharide [9]. In order to detect the possible presence of uronic acids, 

different methanolysis procedures were applied using 2 M HCl in methanol: i) at 85 °C for 16 h; ii) 
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hydrolysis with 2 M TFA at 100 °C for 1 h, followed by methanolysis at 85 °C for 16 h; iii) at 121 

°C for 5 min and iv) at 121 °C for 15 min in a microwave oven (CEM- Discover® SP Microwave). 

Permethylation of the CPS and oligosaccharides was achieved following the protocol by Harris 

[10]. Integration values of the areas of the partially methylated alditol acetates (PMAA) were 

corrected by the effective carbon response factors [11]. De-O-acetylation was obtained by stirring 

the CPS (100 mg) in 10 mM NaOH (1 mg/mL) for 5 h under a stream of nitrogen. Carboxyl 

reduction was performed on 20 mg of CPS using carbodiimide [12] and following the modification 

described by Osman et al.[13]. Size exclusion chromatography of deOAc CPS KK207-2 was 

performed on a Sephacryl S-400 column (1.6 cm i.d. × 90 cm) using 0.05 M NaNO3 as eluent, and a 

flow rate of 7.2 mL/h. Fractions were collected at 15 min intervals. Elution was monitored using a 

refractive index detector (Knauer, RI detector K-2301, Lab-Service Analitica) which was interfaced 

with a computer via PicoLog software. The head, core and tail fractions of the eluted peak were 

pooled together, dialyzed and used for 1H NMR spectroscopy.

Oligosaccharides were separated on a Bio Gel P2 column (1.6 cm i.d. x 90 cm) using the same 

conditions and set up reported above, except the collection of fractions performed at 12 min 

interval.

Oligosaccharides were desalted on a Superdex 30 prep grade column (1.0 cm i.d. x 82 cm) 

using water as eluent at a flow rate of 1.5 mL/min. Elution was monitored using a refractive index 

detector (Knauer, RI detector Smartline 2300, Lab-Service Analitica) which was interfaced with a 

computer via Clarity software. Fractions were collected at 30 sec interval.

Analytical GLC was performed on a Perkin-Elmer Autosystem XL gas chromatograph 

equipped with a flame ionization detector and using He as carrier gas. An HP-1 capillary column 

(Agilent Technologies, 30 m) was used to separate alditol acetates (temperature program: 3 min at 

150 °C, 150–270 °C at 3 °C/min, 2 min at 270 °C), PMAA (temperature program: 1 min at 125 °C, 

125–240 °C at 4 °C/min, 2 min at 240 °C), TMS methyl glycosides (temperature program: 1 min at 

150 °C, 150–280 °C at 3 °C/min, 2 min at 280 °C), and TMS (+)-2-butyl glycosides, for the 

determination of the absolute configuration of the sugar residues [14], (temperature program: 1 min 

at 50 °C, 50-130 °C at 45 °C/min, 1 min at 130 °C, 130–200 °C at 1 °C/min, 10 min at 200 °C). 

GLC-MS analyses were carried out on an Agilent Technologies 7890A gas chromatograph coupled 

to an Agilent Technologies 5975C VL MSD, using the same temperature programs reported above. 

2.3. Partial acid hydrolysis of the deOAc CPS KK207-2, purification and characterization of the 

oligosaccharides obtained
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deOAc CPS KK207-2 (33 mg) was hydrolyzed with 32 mL of 0.5 M TFA at 100 °C for 2 h. 

The sample was roto-evaporated to dryness under reduced pressure, followed by three washes with 

water. After dissolution in 10 mL of water, the sample was taken to pH = 6.8, and recovered by 

lyophilization. Separation of the products was achieved by size-exclusion chromatography on a Bio 

Gel P2 column with a flow rate of 6.8 mL/h. Fractions belonging to the same peak were pooled 

together and desalted on a Superdex 30 prep grade column. De-salted homogenous fractions were 

combined after determining their composition by ESI-MS, and structurally characterized by ESI-

MS, NMR spectroscopy and GLC-MS of the PMAA derivatives. 

2.4. Smith degradation of the deOAc CPS KK207-2, purification and characterization of the 

oligosaccharides obtained

deOAc CPS KK207-2 was subjected to Smith degradation [15]: 33 mg of the polysaccharide 

were dissolved in 6 mL of water, 0.7 mL of a 0.29 M NaIO4 solution were added (0.8 moles of 

NaIO4/1 mole of oxidizable diol) and the oxidation was let to proceed for 1 h in the dark at 10 °C. 

After addition of glycerol to react with excess of periodate, reduction of the aldehyde groups was 

achieved by incubation with NaBH4 at room temperature for 16 h. Excess of borohydride was 

destroyed with 50% aqueous acetic acid and the solution was dialyzed. The recovered material was 

hydrolysed with 0.5 M TFA for 6 days at room temperature, rotoevaporated to dryness, washed 

three times with water to remove TFA, taken to pH = 7.0 and recovered by lyophilization. The 

products were separated on a Bio Gel P2 column with a flow rate of 7.2 mL/h. Fractions belonging 

to the same peak were pooled together and desalted on a Superdex 30 prep grade column. De-salted 

homogenous fractions were combined after determining their composition by ESI-MS, and 

structurally characterized by ESI-MS, NMR spectroscopy and GLC-MS of the PMAA derivatives. 

2.5. Lithium degradation of the CPS KK207-2, purification and characterization of the products 

obtained

CPS KK207-2 was subjected to degradation with lithium metal following the protocol by Lau et 

al. [16]. The CPS (20 mg) was dissolved in 4 mL of ethylenediamine and treated with lithium wire; 

it was then purified according to literature procedures [16], except that the resin used was Amberlite 

IR H+120. After the ion exchange procedure, the sample was lyophilized and separated by size 

exclusion chromatography on a Bio Gel P2 column (Fig. S1). The peak eluting at the exclusion 
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volume of the column was dialyzed (Spectra Por 6 membrane, CO 1000 Da), and recovered by 

freeze-drying. 

2.6. ESI mass spectrometry

ESI mass spectra were recorded on a Bruker Esquire 4000 ion trap mass spectrometer connected 

to a syringe pump for the injection of the samples. The instrument was calibrated using a tune 

mixture provided by Bruker. Oligosaccharides were dissolved in 50% aqueous methanol - 11 mM 

NH4OAc; permethylated oligosaccharides were dissolved in a 1:1 chloroform : methanol mixture, 

11mM NH4OAc. Samples were injected at 180 μL/h. Detection was performed in the positive ion 

mode.

2.7. NMR experiments

The CPS KK207-2 and deOAc CPS KK207-2 samples were dissolved in water (about 3 

mg/mL) and sonicated using a Branson sonifier equipped with a microtip at 2.8 Å, in order to 

decrease their molecular masses. The samples were cooled in an ice bath and sonicated using 10 

bursts of 1 min each, separated by 1 min intervals. The polysaccharides (~5 mg) were exchanged 

twice with 99.9% D2O by lyophilization and then dissolved in 0.6 mL of 99.96% D2O and 

introduced into a 5 mm NMR tube for data acquisition. 1D 1H and 13C and 2D, COSY, TOCSY, 

NOESY, HSQC, HMBC and hybrid HSQC-TOCSY and HSQC-NOESY spectra were obtained 

using a Bruker Advance III 600 MHz NMR spectrometer equipped with a BBO Prodigy cryoprobe 

and processed using standard Bruker software (Topspin 3.2). The probe temperature was set at 343 

K. 2D TOCSY experiments were performed using mixing times of 180 ms and the 1D variants 

using mixing times up to 200 ms. The 2D NOESY experiment and 1D variants were performed 

using a mixing time of 300 ms. The HSQC (with multiplicity editing) experiment was optimized for 

J = 145 Hz (for directly attached 1H-13C correlations), and the HMBC experiment optimized for a 

coupling constant of 8 Hz (for long-range 1H-13C correlations). HSQC-TOCSY and HSQC-NOESY 

NMR spectra were recorded using mixing times of 120 and 300 ms, respectively. 2D experiments 

were recorded using non-uniform sampling: 50% for homonuclear and 25% for heteronuclear 

experiments. Spectra were referenced relative to H-2/C-2 of -Glc: 1H at 3.34 ppm and 13C at 74.0 

ppm, established using acetone as an internal standard. 

Oligosaccharides were exchanged twice with 99.9% D2O by lyophilization and then dissolved in 

0.6 mL of 99.96% D2O. Spectra were recorded on a 500 MHz Varian spectrometer operating at 333 
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K. 2D experiments were performed using standard pulse sequences and pulsed field gradients for 

coherence selection when appropriate. HSQC spectra were recorded using 145 Hz (for directly 

attached 1H–13C correlations). TOCSY spectra were acquired using 150 ms spin-lock time and a 1.2 

s relaxation time. NOESY experiments were recorded with 200 ms mixing time and a 1.2 s 

relaxation time. NMR spectra were processed using MestreNova software. Chemical shifts are 

expressed in ppm using acetone as internal reference (2.225 ppm for 1H and 31.07 ppm for 13C). 

3. Results and Discussion

3.1. Purification and composition analysis of CPS KK207-2

The strain Klebsiella pneumoniae KK207-2 was grown on carbohydrate rich Worfel-Ferguson 

agar medium for 4 days at 30°C. The bacterial lawn was first collected with 0.9 % NaCl and 

subsequent purification gave 224 mg of polysaccharide, while treatment of the remaining bacterial 

cells with a 2% phenol solution followed by purification resulted in 152 mg of polysaccharide. 1H 

NMR spectroscopy showed that the two samples were identical and the polysaccharide was named 

CPS KK207-2. 1H NMR spectroscopy determined about 0.60 O-acetyl groups per repeating unit. 

An aliquot of de-acetylated sample (deOAc CPS KK207-2) eluted as a single broad peak upon size 

exclusion chromatography on a Sephacryl S-400 column (data not shown); the head, core and tail 

fractions of the peak were pooled and analyzed by 1H NMR spectroscopy which showed that the 

three fractions were structurally homogenous, indicating the production of a single polysaccharide.

Composition analysis as alditol acetate derivatives revealed Gal and Glc in the molar ratios 1.0 

: 2.5, while analysis of methyl-glycosides trimethylsilyl (TMS) derivatives confirmed Gal and Glc 

in variable molar ratios depending on the experimental conditions used (from 1.0 : 3.1 to 1.0 : 5.3), 

but did not reveal the presence of any uronic acids. The position of the glycosidic linkages was 

determined by GLC and GLC-MS analysis after derivatization of the sugar components to partially 

methylated alditol acetates. GLC analysis on a HP-1 column showed four peaks attributed to t-Glc, 

4-linked Glc, 6-linked Glc and 3,4-linked Gal, all in the pyranose configuration. Integration of the 

respective peak areas, after correction for the effective carbon response factors [11], gave the 

relative molar ratios reported in Table S1. In order the verify the presence of uronic acids, CPS 

KK207-2 was reduced with carbodiimide [12,13], and linkage analysis revealed double the amount 

of 4-linked Glc (Table S1), thus indicating a 4-linked GlcpA residue in the native CPS. These data 

also showed that CPS KK207-2 has a branched repeating unit made of six monosaccharides. The 

absolute configuration was established to be D for all residues.
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3.2. Production and characterization of the oligosaccharides obtained by partial acid hydrolysis of 

deOAc CPS KK207-2

deOAc CPS KK207-2 was treated with 0.5 M TFA and the products were separated by size 

exclusion chromatography on a Bio Gel P2 column. The elution profile is reported in Fig. S2a. 

Fractions belonging to the same peak were pooled together and, after desalting, subjected to ESI-

MS and 1H NMR spectroscopy to identify peaks suitable for further structural investigation. The 

partial hydrolysis treatment gave only one reasonably pure peak (PH-2) which was identified by 

ESI-MS as the disaccharide HexA-Hex; only 6-linked Glc was detected by GLC-MS analysis of the 

PMAA derivatives. The 1H NMR spectrum (Fig. 1a) gave the three signals in the anomeric region at 

5.23, 4.65 and 4.50 ppm (with integration values of 0.3, 0.5, and 1.0, respectively), assigned to H-1 

of the reducing end 6-Glc-α and 6-Glc-β, and of t-GlcpA-β, respectively, thus identifying PH-2 as 

the aldobiuronic acid β-D-GlcpA-(16)-D-Glc-OH.

3.3. Production and characterization of the oligosaccharides obtained by Smith degradation of 

deOAc CPS KK207-2

deOAc CPS KK207-2 was subjected to partial periodate oxidation, because, due to the type of 

glycosidic linkages, a complete oxidation would have left only the branched Gal residue intact, 

resulting in little structural information. After oxidation, the sample was subjected to Smith 

degradation [15] and the oligosaccharides produced separated by size exclusion chromatography on 

a Bio Gel P2 column (Fig. S2b). Fractions belonging to the same peak were pooled together, 

desalted and subjected to ESI-MS and 1H NMR spectroscopy to identify peaks containing mainly 

only one oligosaccharide and thus suitable for further structural investigation. In this way two peaks 

were selected, named SD-1 and SD-2.

The most intense ion in the ESI mass spectrum of the sample SD-2 (Fig. 2a) at 483.2 m/z 

corresponded to the sodium adduct of a compound constituted of two hexoses and one 2,3,4-

trihydroxybutanoic acid (THBA) moiety at the reducing end, the latter deriving from oxidation of 

the 4-linked GlcA residue. MS2 of the ion at 483.2 m/z (Fig. 2b) gave the sequence Hex-Hex-

THBA. A less intense ion at 637.2 m/z was present in the ESI mass spectrum (data not shown) and 

it was attributed to the oligosaccharide found as main component in SD-1 (see next paragraph). SD-

2 was per-methylated and subjected to ESI-MS and MS2 which confirmed both its composition and 

sequence. After hydrolysis and derivatization to alditol acetates, GLC-MS analysis showed t-Glc 

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531



10

and 6-Glc in the relative molar ratio 1.0 : 0.8. The 1H NMR spectrum (Fig. 1b) gave three signals in 

the anomeric region: two resonances at 5.15 and 4.48 ppm (with integration values of 1.0, and 1.6, 

respectively), were attributed to H-1 of 6-linked α-D-Glcp and t-β-D-Glcp respectively, while the 

less intense signal at 5.47 ppm, with integration value of 0.3, was assigned to a residue in the 

oligosaccharide SD-1 (Fig. 1c), in agreement with ESI-MS data. Homo- and hetero-nuclear 2D 

NMR experiments (data not shown) gave all the chemical shifts for each spin system (Table S2) and 

established the following structure:

β-D-Glcp-(16)-α-D-Glcp-(1O-CH-(CH2OH)-CHOH-COOH.

The residue α-D-Glcp is linked to C3 of the THBA, as expected for a 4-linked GlcpA.

ESI-MS of the oligosaccharides SD-1 (Fig. 2c) indicated two hexoses and a hexuronic acid with 

glycerol at the reducing end; MS2 of the ion at 615.1 m/z (Fig. 2d) gave the sequence Hex-Hex-

HexA-Gro. The sample was per-ethylated and subjected to ESI-MS and MS2 which confirmed both 

the composition and the sequence. After hydrolysis and derivatization to alditol acetates, GLC-MS 

identified two main peaks with t-Glc and 6-Glc in the relative molar ratio 1.0 : 1.7. The 1H NMR 

spectrum (Fig. 1c) contained two anomeric signals at 5.47 and 4.49 ppm, the latter with integration 

values corresponding to two residues. Based on the chemical shifts assignments for PH-2 and SD-2, 

and on the 2D NMR data, the signal at 5.47 ppm was attributed to α-D-Glcp, and those at 4.49 ppm 

to β-D-GlcpA and β-D-Glcp. Homo- and hetero-nuclear 2D NMR experiments (data not shown) 

determined the chemical shifts for each spin system (Table S3). NOESY plot showed inter-residue 

connectivities between H-1 (4.49 ppm) of t-β-D-Glcp to H-6 (3.89 ppm) of 6-linked α-D-Glcp, and 

H-1 (5.47 ppm) of 6-linked α-D-Glcp to H-4 (3.81 ppm) of 4-linked β-D-GlcpA, thus establishing 

the following structure β-D-Glcp-(16)-α-D-Glcp-(14)-β-D-GlcpA-(11)-Gro, in agreement 

with ESI-MS data. The deshielded chemical shift of Gro C-1 at 71.93 ppm is due to its linkage to C-

1 of β-D-GlcpA, thus indicating that the uronic acid is linked to C-6 of another 6-linked α-D-Glcp in 

the CPS.

The fractions eluted in the void volume of the Bio Gel P2 column (SD-Vo) were subjected to 

linkage analysis and the results (Table S1) showed a significant change in the relative molar ratios 

with the additional presence of 3-linked Gal, deriving from the original 3,4-linked Gal. By 

calculating the molar ratios relative to the sum of the values for 3-linked Gal and 3,4-linked Gal, 

since only this residue is not susceptible to oxidation (column IV, Table S1), it was clear that 4-Glc 

had not been oxidised, whereas about half of the branched galactose had become 3-linked Gal, 

suggesting that the side chain is linked to C-4 of the Gal residue.

The experimental findings obtained from analyzing the Smith degradation products suggested 

that CPS KK207-2 has a disaccharide backbone and the following side chain:
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β-D-Glcp-(16)-α-D-Glcp-(14)-β-D-GlcpA-(16)-α-D-Glcp-(1

3.4. NMR assignments for CPS KK207-2 repeating unit

The repeating unit (RU) structure of deOAc CPS KK207-2 was investigated at 600 MHz. The 
1H NMR spectrum contains six main anomeric signals designated A to F (Fig. 1d). Residues A and 

E gave sharp peaks at 5.48 and 4.49 ppm and resulted in strong crosspeaks in the 2D experiments; 

these were attributed to the flexible terminal disaccharide β-D-Glcp-(16)-α-D-Glcp-(1 

identified in SD-1. The remaining residues gave broad anomeric signals and 2D crosspeaks of lower 

intensity characteristic of units with restricted motion and branch points. The hexasaccharide RU 

spin systems were elucidated using a combination of 1D and 2D 1H-1H correlation experiments with 

correlations established from the six anomeric protons. The anomeric region of COSY, shown as an 

overlay with TOCSY (Fig. 3), gave H-1 to H-2 for each residue. TOCSY (180 ms) gave additional 

correlations for each of the spin systems depending on the coupling constants: H-1 to H-6 for -Glc 

(residue A at 5.48 ppm) and -Glc (residues C and E at 4.69 and 4.49 ppm), H-1 to H-4 for -Glc 

(residue B at 4.92 ppm) and -GlcA (residue F at 4.48 ppm), and H-1 to H-3 for -Gal (residue D at 

4.59 ppm). These assignments were confirmed and additional correlations established using 1D 

TOCSY experiments recorded using a mixing time of 200 ms (Fig. S3): H-1 to H-4 for residue D 

(-Gal), H-1 to H-5 for residue F (-GlcA) and H-1 to H-6 for residue B (-Glc). Through-space 

correlations, indicated by negative peaks in the 1D TOCSY spectra, were revealed in the anomeric 

region of the NOESY experiment (Fig. 4). NOESY (300 ms) gave intra-residue correlations, mainly 

H-1 to H-2 for the -sugars and H-1 to H-3 and H-5 for the -sugars including the 3,4-linked -Gal 

(D). NOESY also gave inter-residue correlations to the neighbouring residue and the linkage site 

proton for most units: H-1 -Glc (A) to H-4 of GlcA (F), H-1 -Glc (B) to H-5 of -Gal (D), H-1 

-Glc (C) to H-3 (and H-5) of -Gal (D), H-1 -Gal (D) to H-4 of -Glc (C), and H-1 -Glc (E) to 

H-6 and H-6’ of -Glc (A). Small crosspeaks were detected at a lower level between H-1 -Glc (B) 

to H-4 of -Gal (D) at 4.27 ppm and H-1 -GlcA (F) to H-6’ of -Glc (B) at 3.95 ppm, thus 

elucidating all the linkage positions in the CPS KK207-2 RU. The assignments and sequence of 

residues in the RU were corroborated by 1H-13C correlation experiments: edHSQC, HSQC-TOCSY, 

HSQC-NOESY and HMBC. This permitted full assignment of the 1H and 13C chemical shifts for 

each spin system which are collected in Table 1 and the 13C assignments are shown in Fig. 5. 

Downfield displacements of the signals for C-6 of A and B, C-4 of C and C-3 and C-4 of D 

compared to their shifts in the spectra of the corresponding non-substituted monosaccharides [17], 

demonstrated the glycosylation pattern of the RU. This was in agreement with the NOESY data and 
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confirmed by inter-residue 1H and 13C correlations established using HMBC and HSQC-NOESY. 

Some key HMBC correlations are shown in Fig. 6, displayed as an overlay with HSQC: H-1 of -

Glc (A) to C-4 of GlcA (F) at 77.4 ppm, H-1 of -Glc (C) to C-3 of -Gal (D) at 82.0 ppm, H-1 -

Glc (E) to C-6 of -Glc (A) at 68.7 ppm and H-4 of -Gal (D) to C-1 of -Glc (B) at 99.5 ppm. 

Thus a combination of 1H-1H and 1H-13C experiments confirmed the linkage positions, sequence 

and structure of the hexasaccharide RU with the main chain disaccharide 4)-β-D-Glc-(13)-β-D-

Gal-(1 and the tetrasaccharide side chain β-D-Glc-(16)-α-D-Glc-(14)-β-D-GlcA-(16)-α-D-

Glc linked to C-4 of β-D-Gal. 

The 1H NMR spectrum of native CPS KK207-2 contains a singlet at 2.16 ppm due to ~60% O-

acetylation. 2D NMR experiments identified that the O-acetylation was on a single site: C-6 of the 

3,4-linked β-D-Gal (unit D). Comparison of the HSQC spectra for deOAc CPS KK207-2 and CPS 

KK207-2 showed a decrease in the intensity of the C-6 Gal peak at 61.0 ppm and the presence of a 

new peak at 63.6 ppm with attached protons at 4.35 and 4.36 ppm attributed to the CH2OAc group 

of β-D-Gal6Ac.

3.5. Characterization of the products obtained by lithium degradation of the CPS KK207-2

CPS KK207-2 was treated with lithium metal [16], in order to destroy the glucuronic acid 

residue, and subsequently purified on a Bio Gel P2 column; the elution profile is shown in Fig. S1. 

The fractions eluting in the void volume of the column, were grouped and named Li CPS KK207-2 

were subjected to 1D and 2D NMR spectroscopy in order to confirm the sequence in the 

polysaccharide backbone. The 1H NMR spectrum (Fig. 1e) showed three main anomeric signals at 

4.97, 4.71, and 4.56 ppm, which were assigned to t-α-Glc, 4-linked -Glc and 3,4-linked -Gal, 

respectively, based on previous findings. A less intense signal at 4.49 ppm was attributed to residual 

GlcA which had not been destroyed completely by the lithium treatment. Homo-and heteronuclear 

2D NMR experiments (data not shown) determined the chemical shifts for each spin system (Table 

S4). Some key HMBC correlations are shown in Fig. S4, displayed as an overlay with HSQC: H-1 

of -Glc to C-4 of -Gal at 76.63 ppm, H-1 of -Glc to C-3 of -Gal at 81.62 ppm, and H-1 -Gal 

to C-4 of -Glc at 80.16 ppm. These inter-residue correlations confirmed the linkages and sequence 

resulting in the following repeating unit structure:

[4)-β-D-Glcp-(13)-β-D-Galp-(1]n
4

1

α-D-Glcp
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In conclusion, all the experimental data collected demonstrated that the capsular polysaccharide 

produced by Klebsiella pneumoniae clinical strain KK207-2, belonging to the sequence type ST258, 

has a repeating unit comprised of a disaccharide backbone and a tetrasaccharide side chain, with the 

following structure:

OAc

6

[3)-β-D-Gal-(14)-β-D-Glc-(1]n
4

1

β-D-Glcp-(16)-α-D-Glcp-(14)-β-D-GlcpA-(16)-α-D-Glcp

This structure is a novel one among the K. pneumoniae K antigens, in agreement with the 

original structure of the cps207-2 gene cluster based on the wzc-based genotyping method [4,6]. CPS 

KK207-2 shares structural similarities with other K antigens. In fact, it has the same backbone of 

K22 [18], including the O-acetyl position on C-6 of the Gal residue, K25 [19], and K37 [20]. 

Furthermore, part of its side chain is also present in K18 [21], K22, K23 [22], K26 [23], K37 and 

K41 [24] polysaccharides (Fig. S5).

3.6. Prediction of the reactions catalyzed by the cps207-2 gene cluster glycosyltransferases

Taking advantage of the sequenced cps207-2 gene cluster [6], and of the structural knowledge 

gained in the present investigation, the assignment of each glycosyltransferase (GT) to the 

corresponding catalyzed reaction was undertaken. The cps gene cluster in Klebsiella consists of 

some highly conserved genes together with a less conserved region [5]. Among the highly 

conserved are six genes located at the 5’ end and mainly involved in the export and polymerization 

of the repeating unit (galF, cpsACP, wzi, wza, wzb, wzc), and two genes located at the 3’ end and 

encoding for glucose-6-phosphate dehydrogenase and UDP-glucose dehydrogenase (gnd and ugd). 

The central region is the less conserved one and is responsible for K-type variation. In the cps207-2 

cluster such region contains mainly genes coding for GTs. The structural similarity of CPS KK207-

2 with K22 [18] and K37 [20] polysaccharides agrees with the high homology detected within their 

corresponding cps gene clusters [6]. In fact, the gene content of cps207-2 is the same of cpsK22 except 

for a transposon insertion that caused the substitution of three genes in the central region of the 

cluster. cps207-2 and cpsK22 share three glycosyltransferases that can be related to the formation of 

the following glycosidic bonds: Gal(β1-4)Glcβ in the backbone, and Glc(α1-4)Galβ and GlcA(β1-
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6)Glcα in the side chain (Fig. S5). The precise reaction catalyzed by each of these three GTs can be 

inferred by comparison with other strains with which CPS KK207-2 and K22 share only one 

glycosidic bond and therefore, one GT in their gene clusters [5]. More precisely, they share the 

Gal(β1-4)Glcβ structure and the WcuW GT with K25 [5,19], and the GlcA(β1-6)Glcα structure and 

the WckA GT with K23 [5,22]. By exclusion, WcmA GT, the third common GT between cps207-2 

and cpsK22, can be predicted to catalyze the addition of the first sugar residue of the side chain to the 

backbone, Glc(α1-4)Galβ (Fig. 7).

Two genes carried by the transposon insertion in cps207-2 (orf13 and orf15) code for GTs not 

present in the cpsK22 cluster, they can be predicted to catalyze the remaining two glycosidic bonds 

in the side chain. In an attempt to identify the precise reaction catalyzed by these enzymes, it was 

found that CPS KK207-2 shares only one glycosidic bond with the K18 polysaccharide [5,21], 

namely Glc(α1-4)GlcAβ (Fig. S5). Comparison of the protein sequences of the GTs coded in the 

cps clusters of these two strains showed an acceptable homology level only between the protein 

coded by orf13 of cpsK207-2 and WcuH of cpsK18 (51% identities, 67% positives), strongly 

suggesting that this GT is responsible for the addition of the activated α-D-Glcp residue to C4 of the 

uronic acid. By exclusion, the GT coded by orf15 should catalyze the addition of the terminal β-D-

Glcp residue to C6 of the α-D-Glcp in the side chain. This hypothesis was confirmed by comparison 

with the K26 type [5,23], since the structure Glc(β1-6)Glcα is common to both CPSs (Fig. S5). 

Sequence analysis identified homology between the protein coded by orf15 and the 

glycosyltransferase WcuU (41% identities, 57% positives).

Despite the structural similarities of CPS KK207-2 and K41 side chains (Glc(β1-6)Glc(α1-

4)GlcA(β) which might explain the cross-reactivity observed for three ST258 K. pneumoniae 

clinical strains isolated in a Greek hospital [25], comparison of the GTs coded by cpsKK207-2 and 

cpsK41 did not retrieve any similarity. After comparison of common and unique genes and structures 

of K41 and K12 antigens, Pan et al. [5] suggested that WcpT and WcpU might be the GTs involved 

in the synthesis of the side chain of K41 CPS. Nevertheless, this seems unlikely for two reasons: i) 

the wcpT and wcpU sequences are actually part of a unique gene in a K. oxytoca strain genome 

(GenBank accession no. CP026285, locus_tag=”C2U42_08200”) and ii) in the cpsK41 cluster the 

wcpT and wcpU sequences flank an IS1 transposase insertion which might have interrupted a single 

gene sequence. Therefore, it is likely that some of the cpsK41 genes have yet to be identified. The 

biochemical pathway for the synthesis of the CPS KK207-2 repeating unit is reported in Fig. 7 and 

the data are summarized in Table 2.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

Author Contributions: 

P. C. and R. R. designed the study. B. B. purified the capsular polysaccharide, performed all the wet 

chemistry experiments and GLC-MS analyses of carbohydrate derivatives, prepared figures. N. R., 

P. C., B. B. and R. R. recorded and interpreted NMR spectra. C. L. grew the bacteria and assigned 

the glycosyltransferases functions. M. M. D. and G. M. R. contributed to genetic analysis. P. C., N. 

R., and C. L. wrote the main manuscript text and prepared figures. All authors critically reviewed 

and edited the manuscript.

Competing interests

Authors have no competing interests to declare.

Acknowledgments

Funding: This work was supported by the University of Trieste (FRA 2015).

References

[1] M.K. Paczosa, J. Mecsas, Klebsiella pneumoniae: Going on the Offense with a Strong Defense, 

Microbiol. Mol. Biol. Rev. 80(3) (2016) 629–661. https://doi.org/10.1128/MMBR.00078-15.

[2] C-R. Lee, J.H. Lee, K.S. Park, Y.B. Kim, B.C. Jeong, S.H. Lee, 2016. Global dissemination of  

carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment 

options, and detection methods, Front. Microbiol. 7, 895. 

https://doi.org/10.3389/fmicb.2016.00895.

[3] S. Brisse, V. Passet, A.B. Haugaard, A. Babosan, N. Kassis-Chikhani, C. Struve, D. Decré, wzi 

gene sequencing, a rapid method for determination of capsular type for Klebsiella strains, J. 

Clin. Microbiol. 51 (2013) 4073–4078. https://doi.org/10.1128/JCM.01924-13.

[4] Y.J. Pan, T.L. Lin, Y.H. Chen, C.R. Hsu, P.F. Hsieh, M.C. Wu, J.T. Wang, 2013. Capsular 

types of Klebsiella pneumoniae revisited by wzc sequencing, PLoS ONE 8(12), e80670. 

https://doi.org/10.1371/journal.pone.0080670.

[5] Y.J. Pan, T.L. Lin, C.T. Chen, Y.Y. Chen, P.F. Hsieh, C.R. Hsu, M.C. Wu, J.T. Wang, 2015. 

Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of 

Klebsiella spp., Scientific Reports 5, 15573. https://doi.org/10.1038/srep15573.

[6] M.M. D’Andrea, F. Amisano, T. Giani, V. Conte, N. Ciacci, S. Ambretti, L. Santoriello, G.M. 

Rossolini, 2014. Diversity of capsular polysaccharide gene clusters in Kpc-producing 

Klebsiella pneumoniae clinical isolates of sequence type 258 involved in the italian epidemic, 

PLoS ONE 9(5), e96827. https://doi.org/10.1371/journal.pone.0096827.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



16

[7] F.R. Deleo, L. Chen, S.F. Porcella, C.A. Martens, S.D. Kobayashi, A.R. Porter, K.D. Chavda, 

M.R. Jacobs, B. Mathema, R.J. Olsen, R.A. Bonomo, J.M. Musser, B.N. Kreiswirth, Molecular 

dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella 

pneumoniae, Proc. Natl. Acad. Sci. 111(13) (2014) 4988–4993. 

https://doi.org/10.1073/pnas.1321364111.

[8] P. Albersheim, D.J. Nevins, P.D. English, A. Karr, A method for the analysis of sugars in plant 

cell-wall polysaccharides by gas-liquid chromatography, Carbohydr. Res. 5 (1967) 340–345. 

https://doi.org/10.1016/S0008-6215(00)80510-8.

[9] K. Kakehi, S. Honda, Silyl ethers of carbohydrates, in: C.J. Biermann, G.D. McGinnis (Eds.), 

Analysis of carbohydrates by GLC and MS, Boca Raton (FL), CRC Press, 1989, pp. 43–85.

[10] P.J. Harris, R.J. Henry, A.B. Blakeney, B.A. Stone, An improved procedure for the methylation 

analysis of oligosaccharides and polysaccharides, Carbohydr. Res. 127 (1984) 59–73. 

https://doi.org/10.1016/0008-6215(84)85106-X.

[11] D.P. Sweet, R.H. Shapiro, P. Albersheim, Quantitative analysis by various g.l.c. response-

factor theories for partially methylated and partially ethylated alditol acetates, Carbohydr. Res. 

40 (1975) 217–225. https://doi.org/10.1016/S0008-6215(00)82604-X.

[12] R.L. Taylor, H.E. Conrad, Stoichiometric depolymerization of polyuronides and 

glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-

activated carboxyl group, Biochemistry 11 (1972) 1383–1388. 

https://doi.org/10.1021/bi00758a009.

[13] S.F. Osman, W.F. Fett, M.L. Fishman, Exopolysaccharides of the phytopathogen Pseudomonas 

syringae pv. Glycinea, J. Bacteriol. 166(1) (1986) 66–71. https://doi.org/10.1128/jb.166.1.66-

71.1986.

[14] G.J. Gerwig, J.P. Kamerling, J.F.G. Vliegenthart, Determination of the d and l configuration of 

neutral monosaccharides by high-resolution capillary g.l.c., Carbohydr. Res. 62 (1978) 349–

357. https://doi.org/10.1016/S0008-6215(00)80881-2.

[15] I.J. Goldstein, G.W. Hay, B.A. Lewis, F. Smith, Controlled degradation of polysaccharides by 

periodate oxidation, reduction, and hydrolysis, Methods Carbohydr. Chem. 5, (1965) 361–370.

[16] J.M. Lau, M. McNeil, A.G. Darvill, P. Albersheim, Selective degradation of the glycosyluroic 

acid residues of complex carbohydrates by lithium dissolved in ethylenediamine, Carbohydr. 

Res. 168 (1987) 219–243. https://doi.org/10.1016/0008-6215(87)80028-9.

[17] P.E. Jansson, L. Kenne, G. Widmalm, Computer-assisted structural analysis of polysaccharides 

with an extended version of CASPER using 1H-and 13C-NMR data. Carbohydr. Res. 188 

(1989) 169–191. https://doi.org/10.1016/0008-6215(89)84069-8.

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944



17

[18] L.A. Parolis, H. Parolis, H. Niemann, S. Stirm, Primary structure of Klebsiella serotype K22 

capsular polysaccharide: another glycan containing 4-O-[(S)-1-carboxyethyl]-D-glucuronic 

acid, Carbohydr. Res. 179 (1988) 301–314. https://doi.org/10.1016/0008-6215(88)84126-0.

[19] H. Niemann, B. Kwiatkowski, U. Westphal, S. Stirm, Klebsiella serotype 25 capsular 

polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase, J. 

Bacteriol. 130 (1977) 366–374.

[20] B. Lindberg, B. Lindqvist, J. Lönngren, W. Nimmich, Structural studies of the capsular 

polysaccharide of Klebsiella type 37, Carbohydr. Res. 58 (1977) 443–451. 

https://doi.org/10.1016/S0008-6215(00)84371-2.

[21] G.G.S. Dutton, K.L. Mackie, M.T.Yang, Structural investigation of Klebsiella serotype K18 

polysaccharide, Carbohydr. Res. 65 (1978) 251–263. https://doi.org/10.1016/S0008-

6215(00)84317-7.

[22] G.G.S. Dutton, K.L. Mackie, A.V.Savage, M.D. Stephenson, Structural investigation of the 

capsular polysaccharide of Klebsiella serotype K23, Carbohydr. Res. 66, (1978) 125–131. 

https://doi.org/10.1016/S0008-6215(00)83245-0.

[23] J. Di Fabio, G.G.S. Dutton, Structural investigation of the capsular polysaccharide of Klebsiella 

serotype K26, Carbohydr. Res. 92, (1981) 287–298. https://doi.org/10.1016/S0008-

6215(00)80399-7.

[24] J.P. Joseleau, M. Lapeyre, M. Vignon, G.G.S. Dutton, Chemical and n.m.r.-spectroscopic 

investigation of the capsular polysaccharide of Klebsiella serotype K41, Carbohydr. Res. 67 

(1978) 197–212. https://doi.org/10.1016/S0008-6215(00)83742-8.

[25] L.S. Tzouvelekis, V. Miriagou, S.D. Kotsakis, K. Spyridopoulou, E. Athanasiou, E. Karagouni, 

E. Tzelepi, G.L. Daikos, KPC-producing, multidrug-resistant Klebsiella pneumoniae sequence 

type 258 as a typical opportunistic pathogen, Antimicrob. Agents Chemother. 57 (2013) 5144–

5146. https://doi.org/10.1128/AAC.01052-13.

Appendix

Supplementary material

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003



18

Table 1
1H and 13C chemical shift assignments of CPS deOAc-KK207-2. Spectra were recorded at 600 

MHz at 343 K.

Residue Chemical shifts (ppm)a

H-1
C-1

H-2
C-2

H-3
C-3

H-4
C-4

H-5
C-5

H-6
C-6

5.48 3.52 3.72 3.52 3.87 3.90, 4.116)-α-D-Glcp-(1
(A) 98.9 72.5 73.7 70.0 71.8 68.7

4.92 3.52 3.78 3.69 4.32 3.95, 4.106)-α-D-Glcp-(1
(B) 99.5 72.6 73.4 69.7 71.2 68.5

4.69 3.25 3.66 3.50 3.58 3.77, 4.004)--D-Glcp-(1
(C) 105.1 74.2 75.5 80.9 75.7 61.7

4.59 3.74 3.92 4.27 3.88 ~3.863,4)--D-Galp-(1
(D) 103.8 71.7 82.0 76.2 76.5 61.0

4.49 3.34 3.52 3.42 3.46 3.74, 3.91-D-Glcp-(1
(E) 103.5 74.0 76.6 70.6 76.7 61.7

4.48 3.42 3.78 3.80 3.80
6)--D-GlcpA-(1

(F) 103.3 73.9 77.1 77.4 77.5 175.4

a Chemical shifts are given relative to acetone (2.225 ppm for 1H and 31.07 ppm for 13C).
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Table 2

Assignments of glycosyltransferases (GT) catalysed reactions on the basis of CPS structural 

homology and protein sequence homology.

Reference
GT Glycosidic bond Accession no. K type

Structure cps cluster

BAT23470.1 K25 [19] [5]

BA027504.1 K22 [18] [5]

BAT23694.1 K37 [20] [5]
WcuW β-D-Galp(14)-β-D-Glcp

CCI88053.1 KK207-2 This work [6]

BA027502.1 K22 [18] [5]

BAT23692.1 K37 [20] [5]WcmA α-D-Glcp(14)-β-D-Galp

CCI88051.1 KK207-2 This work [6]

BAT23435.1 K23 [22] [5]

BA027503.1 K22 [18] [5]

BAT23693.1 K37 [20] [5]
WckA β-D-GlcpA(16)-α-D-Glcp

CCI88052.1 KK207-2 This work [6]

BAT23379.1 K18 [21] [5]
WcuH α-D-Glcp(14)-β-D-GlcpA

CCI88056.1 KK207-2 This work [6]

BAT23487.1 K26 [23] [5]
WcuU β-D-Glcp(16)-α-D-Glcp

CCI88058.1 KK207-2 This work [6]
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FIGURE LEGEND

Fig. 1. 1H NMR spectra of PH-2 (a), SD-2 (b), SD-1 (c), de-OAc CPS KK207-2 (d), Li CPS 

KK207-2 (e).

Fig. 2. ESI mass spectrum of the oligosaccharide SD-2 (a) and ESI MS2 of the ion at 483.2 m/z (b); 

ESI mass spectrum of the oligosaccharide SD-1 (c) and ESI MS2 of the ion at 615.1 m/z (d). 

Assignments are indicated in the figures.

Fig. 3. Overlay of the COSY (red)/TOCSY (black) anomeric region of deOAc CPS  KK207-2 

recorded at 600 MHz and 343K. The insert shows crosspeaks for residues B, C and D present at a 

lower level. Crosspeaks have been labelled according to the corresponding residue (A to E).

Fig. 4. Expansion of the NOESY anomeric region of deOAc CPS KK207-2 recorded at 600 MHz 

and 343K. Intra- and inter-residue correlation crosspeaks have been labelled according to the 

corresponding residue (A to E).

Fig. 5. Expansion of the 1D 13C NMR spectrum of deOAc CPS KK207-2 recorded at 150 MHz 

and 343K showing the anomeric and ring regions. Carbon peaks have been labelled according to the 

corresponding residue (A to E). Methylene assignments were confirmed by recording the DEPT 

spectrum.

Fig. 6. Expansion overlay of the HSQC (red)/HMBC (black) spectra of deOAc CPS KK207-2 

recorded at 600 MHz and 343K. The corresponding parts of the 1H (1D DOSY) and 13C NMR 

spectra are shown along the horizontal and vertical axis, respectively. Proton/carbon crosspeaks 

have been labelled according to the corresponding residue (A to E).

Fig. 7. Proposed glycosyltransferase and polymerase activity of the Klebsiella pneumoniae KK207-

2 cps gene cluster. Glycosyltransferases responsible for each elongation step are listed above the 

respective glycosidic linkage. The polymerization site is marked by an arrow (a). Identification of 

genes coded in the central region of the cps207-2 cluster (portion 8294-19716 of accession number 

HE866752). ISEcl1-like and a truncated version of IS1-like insertion sequences are indicated by a 

blue and a green box, respectively (b).
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Fig. S1: Bio Gel P2 elution profile of the products obtained after lithium degradation of the CPS-

KK207-2. Fraction eluting in the void volume of the column (Vo peak) were pooled, named Li 

CPS KK207-2, and used for recording NMR spectra. 

  



Table S1 

Determination of the glycosidic linkages in CPS KK207-2 native and after carboxyl reduction, and SD-Vo 

by GLC-MS of PMAA derivatives. 

 

Linkage
a
  Relative molar ratio

c
 

 RRT
b
 I II III IV 

t-Glc 1.00 1.00 1.00 1.00 0.41 

4-Glc 1.22 1.00 1.98 2.85 1.18 

3-Gal 1.23 - - 1.07 0.44 

6-Glc 1.26 1.64 1.92 0.67 0.28 

3,4-Gal 1.34 1.12 1.44 1.35 0.56 

 

a
 t-Glc= terminal non-reducing glucose; the numbers indicate the position of the glycosidic 

linkages, e.g. 4-Glc = 4-linked glucose; 
b
 Relative retention time; 

c
 Peak areas were corrected by the 

effective carbon response factor [11] and the molar ratio are expressed relative to t-Glc in columns 

I, II, III and to the sum of 3-Gal + 3,4-Gal in column IV; I = native CPS KK207-2;
 
II = CPS 

KK207-2 after –COOH reduction [12,13]; III = SD-Vo; IV = SD-Vo with molar ratios relative to 

the sum of 3-Gal + 3,4-Gal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2: Bio Gel P2 elution profiles of the products obtained after partial hydrolysis (a) and Smith 

degradation (b) of deOAc CPS KK207-2. Labelled peaks contained mainly only one 

oligosaccharide and were subjected to ESI-MS and 
1
H NMR spectroscopy analyses. 

  



Table S2 

1
H and 

13
C chemical shift assignments of the sample SD-2 obtained from Smith degradation 

of the CPS KK207-2. Spectra were recorded at 500 MHz and 333 K.  

Residue Chemical shifts (ppm)
a
 

 
H-1 

C-1 

H-2 

C-2 

H-3 

C-3 

H-4 

C-4 

H-5 

C-5 

H-6 

C-6 

6)-α-D-Glcp-(1 5.15 3.54 3.76 3.49 4.00 3.87, 4.16 

 99.83 72.66 73.89 70.51 72.06 69.59 

β-D-Glcp-(1 4.48 3.31 3.49 3.40 3.44 3.73, 3.91 

 103.65 74.02 76.67 70.59 76.76 61.73 

3)-2,3,4 

trihydroxy-butanoic 

acid 

- 4.29 4.02 3.79, 3.76   

 - 74.21 82.24 61.51   

 
a
Chemical shifts are given relative to internal acetone (2.225 ppm for 

1
H and 31.07 ppm for 

13
C). 

  



Table S3 

1
H and 

13
C chemical shift assignments of the sample SD-1 obtained from Smith degradation 

of the CPS KK207-2. Spectra were recorded at 500 MHz and 333 K.  

Residue Chemical shifts (ppm)
a
 

 
H-1 

C-1 

H-2 

C-2 

H-3 

C-3 

H-4 

C-4 

H-5 

C-5 

H-6 

C-6 

6)-α-D-Glcp-(1 5.47 3.53 3.71 3.53 3.85 3.89 4.11 

 99.11 72.63 73.68 70.09 71.83 68.80 

β-D-Glcp-(1 4.49 3.34 3.51 3.41 3.45 3.74 3.92 

 103.57 74.02 76.70 70.66 76.74 61.78 

4)-β-D-GlcpA-(1 4.49 3.40 3.78 3.81 3.81 - 

 103.57 74.02 77.16 77.65 77.65  

1)-Gro 3.95 3.67 3.85 3.66 3.61    

 71.93 71.83 63.44    

 
a
Chemical shifts are given relative to internal acetone (2.225 ppm for 

1
H and 31.07 ppm for 

13
C). 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3: 
1

H NMR spectra of deOAc CPS KK207-2. Selective 1D TOCSY experiments performed 

by irradiation of the anomeric protons for residues A to F (a to f) overlaid with the 
1
D DOSY 

spectrum of the CPS (g). Spectra were recorded at 600 MHz and 343 K using a mixing time of 200 

ms. 

  



Table S4 

1
H and 

13
C chemical shift assignments of the Li CPS KK207-2 obtained from Lithium 

degradation [16] of the CPS KK207-2. Spectra were recorded at 600 MHz and 343 K.  

Residue Chemical shifts (ppm)
a
 

 
H-1 

C-1 

H-2 

C-2 

H-3 

C-3 

H-4 

C-4 

H-5 

C-5 

H-6 

C-6 

α-D-Glcp-(1 4.98 3.52 3.78 3.52 4.18 ~3.84 

 100.20 72.74 73.53 70.26 72.45 61.21 

4)-β-D-Glcp-(1 4.71 3.34 3.66 3.64 3.56 3.83, 4.00 

 105.13 74.17 75.42 80.16 75.66 61.33 

3,4)-β-D-Galp-(1 4.56 3.79 3.87 4.26 3.81 - 

 103.96 71.63 81.62 76.63 76.56  

 
a
Chemical shifts are given relative to internal acetone (2.225 ppm for 

1
H and 31.07 ppm for 

13
C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4: Expansion overlay of the HSQC (red)/HMBC (black) spectra of Li CPS KK207-2 

recorded at 600 MHz and 343K. The proton/carbon crosspeaks have been labelled according to the 

corresponding residue (-Glc, -Glc and -Gal); the small peaks are due to residual -GlcA. The 

inter-residue correlations confirm the linkages and sequence: -D-Glc-(14)--D-Gal-(1 and the 

disaccharide backbone, 4)--D-Glc-(13)-β-D-Gal-(1.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S5: Structure of the repeating units of different CPS: KK207-2 (this article), K18 [21], K22 

[18], K23 [22], K25 [19], K26 [23], K37 [20] and K41 [24] Klebsiella pneumoniae capsular 

polysaccharides. Circles of different colours highlight common glycosidic linkages. These structural 

similarities were used to assign the corresponding GTs genes. 


