10 research outputs found

    EC04-183 Chickpea Production in the High Plains

    Get PDF
    Chickpea (Cicer arietinum L.) is an annual grainlegume or “pulse crop” that is used extensively for human consumption. The seed of this plant, when dried, is commonly used in soup. Its primary use in the United States is for salad bars, while in the Middle East and India it is more frequently cooked and blended with rice dishes. Major chickpea producers include India, Pakistan, Mexico, Turkey, Canada, and Australia. Chickpea makes up more than 20 percent of world pulse production, behind dry bean and pea. Currently, the United States imports more than 80 percent of its domestic chickpea needs. Since the 1980s, chickpea production has increased rapidly in the northwestern United States. Meanwhile, due to agronomic, processing, and marketing constraints, production in the High Plains has been sporadic and often short-lived. During the past few years, the development of new varieties and the potential for chickpea production under dryland and limited irrigation conditions has generated renewed interest among High Plains producers. With this in mind, the purpose of this publication is to provide information to enhance the potential for successful chickpea production

    EC04-183 Chickpea Production in the High Plains

    Get PDF
    Chickpea (Cicer arietinum L.) is an annual grainlegume or “pulse crop” that is used extensively for human consumption. The seed of this plant, when dried, is commonly used in soup. Its primary use in the United States is for salad bars, while in the Middle East and India it is more frequently cooked and blended with rice dishes. Major chickpea producers include India, Pakistan, Mexico, Turkey, Canada, and Australia. Chickpea makes up more than 20 percent of world pulse production, behind dry bean and pea. Currently, the United States imports more than 80 percent of its domestic chickpea needs. Since the 1980s, chickpea production has increased rapidly in the northwestern United States. Meanwhile, due to agronomic, processing, and marketing constraints, production in the High Plains has been sporadic and often short-lived. During the past few years, the development of new varieties and the potential for chickpea production under dryland and limited irrigation conditions has generated renewed interest among High Plains producers. With this in mind, the purpose of this publication is to provide information to enhance the potential for successful chickpea production

    PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    Get PDF
    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January – April and August – December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13–18 Å between 3345−9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935−2.53 μm and resolutions 23−33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012–2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey

    EC04-183A Brown Mustard Production

    Get PDF
    Brown mustard, Brassica juncea, originated from the hybridization of Brassica nigra with Brassica campestris. This probably happened in southwestern Asia and India where the natural distribution of the two species overlaps. Brown mustard has been grown for oilseed, greens, and as a spice. In the 1940s, a yellow-seeded variety of brown mustard was imported into the United States from China and became widely cultivated because, unlike someother mustards, it could be mechanically harvested. Currently, efforts are underway in Canada to develop canola quality brown mustards for oil use; however, in the United States the market is primarily as a source of biodiesel.The brown mustard plant has become recognized for improved heat tolerance relative to spring canola cultivars. It is a very flexible crop, responding well to a wide range of rainfall or to supplemental irrigation. Plants can branch and put on more flowers as moisture becomes less limiting; however, they will produce some yield even with very limited water

    PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    No full text
    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey

    VizieR Online Data Catalog: PESSTO catalog (Smartt+, 2015)

    No full text
    PESSTO (Public ESO Spectroscopic Survey of Transient Objects) began in April 2012 on the New Technology Telescope using the instruments EFOSC2 and SOFI. We typically target supernovae and optical transients brighter than 20.5m for classification and select science targets for detailed follow-up. We use standard EFOSC2 setups providing spectra with resolutions of 13-17Å between 3650-9995Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red Grisms (resolutions 23-33Å) and imaging with broadband JHKs filters. This catalogue data release provides photometric lightcurve coverage for the PESSTO targets for which follow-up lightcurves have been completed. Photometric lightcurves for a total of 18 objects are provided in this initial release. (2 data files)
    corecore