172 research outputs found

    The Deep Poincare Map: A Novel Approach for Left Ventricle Segmentation

    Get PDF
    Precise segmentation of the left ventricle (LV) within cardiac MRI images is a prerequisite for the quantitative measurement of heart function. However, this task is challenging due to the limited availability of labeled data and motion artifacts from cardiac imaging. In this work, we present an iterative segmentation algorithm for LV delineation. By coupling deep learning with a novel dynamic-based labeling scheme, we present a new methodology where a policy model is learned to guide an agent to travel over the image, tracing out a boundary of the ROI – using the magnitude difference of the Poincaré map as a stopping criterion. Our method is evaluated on two datasets, namely the Sunnybrook Cardiac Dataset (SCD) and data from the STACOM 2011 LV segmentation challenge. Our method outperforms the previous research over many metrics. In order to demonstrate the transferability of our method we present encouraging results over the STACOM 2011 data, when using a model trained on the SCD dataset

    Genetic diversity and population structure of six autochthonous pig breeds from Croatia, Serbia, and Slovenia

    Get PDF
    Background: The importance of local breeds as genetic reservoirs of valuable genetic variation is well established. Pig breeding in Central and South-Eastern Europe has a long tradition that led to the formation of several local pig breeds. In the present study, genetic diversity parameters were analysed in six autochthonous pig breeds from Slovenia, Croatia and Serbia (Banija spotted, Black Slavonian, Turopolje pig, Swallow-bellied Mangalitsa, Moravka and Krskopolje pig). Animals from each of these breeds were genotyped using microsatellites and single nucleotide polymorphisms (SNPs). The results obtained with these two marker systems and those based on pedigree data were compared. In addition, we estimated inbreeding levels based on the distribution of runs of homozygosity (ROH) and identified genomic regions under selection pressure using ROH islands and the integrated haplotype score (iHS). Results: The lowest heterozygosity values calculated from microsatellite and SNP data were observed in the Turopolje pig. The observed heterozygosity was higher than the expected heterozygosity in the Black Slavonian, Moravka and Turopolje pig. Both types of markers allowed us to distinguish clusters of individuals belonging to each breed. The analysis of admixture between breeds revealed potential gene flow between the Mangalitsa and Moravka, and between the Mangalitsa and Black Slavonian, but no introgression events were detected in the Banija spotted and Turopolje pig. The distribution of ROH across the genome was not uniform. Analysis of the ROH islands identified genomic regions with an extremely high frequency of shared ROH within the Swallow-bellied Mangalitsa, which harboured genes associated with cholesterol biosynthesis, fatty acid metabolism and daily weight gain. The iHS approach to detect signatures of selection revealed candidate regions containing genes with potential roles in reproduction traits and disease resistance. Conclusions: Based on the estimation of population parameters obtained from three data sets, we showed the existence of relationships among the six pig breeds analysed here. Analysis of the distribution of ROH allowed us to estimate the level of inbreeding and the extent of homozygous regions in these breeds. The iHS analysis revealed genomic regions potentially associated with phenotypic traits and allowed the detection of genomic regions under selection pressure

    The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration

    Get PDF
    Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans

    Potential Use of Near-Infrared Spectroscopy to Predict Fatty Acid Profile of Meat from Different European Autochthonous Pig Breeds

    Get PDF
    Autochthonous pig breeds provide products of differentiated quality, among which quality control is difficult to perform and insufficient for current market requirements. The present research evaluates the predictive ability of near‐infrared (NIR) spectroscopy, combined with chemometric methods as a rapid and affordable tool to assure traceability and quality control. Thus, NIR technology was assessed for intact and minced muscle Longissimus thoracis et lumborum samples collected from 12 European autochthonous pig breeds for the quantification of lipid content and fatty acid composition. Different tests were performed using different numbers of samples for calibration and validation. The best predictive ability was found using minced presentation and set with 80% of the samples for the calibration and the remaining 20% for the external validation test for the following traits: lipid content and saturated and polyunsaturated fatty acids, which attained both the highest determination coefficients (0.89, 0.61, and 0.65, respectively) and the lowest root mean square errors in external validation (0.62, 1.82, and 1.36, respectively). Lower predictive ability was observed for intact muscles. These results could contribute to improve the management of autochthonous breeds and to ensure quality of their products by traditional meat industry chains

    Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip

    Get PDF
    Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on FST outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions

    Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems

    Get PDF
    Background: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining wholegenome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. Conclusions: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources

    Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip

    Get PDF
    Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on F-S(T) outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions
    corecore