21 research outputs found

    Integrative Structural Modelling of the Cardiac Thin Filament: Energetics at the Interface and Conservation Patterns Reveal a Spotlight on Period 2 of Tropomyosin

    Get PDF
    Cardiomyopathies are a major health problem, with inherited cardiomyopathies, many of which are caused by mutations in genes encoding sarcomeric proteins, constituting an ever-increasing fraction of cases. To begin to study the mechanisms by which these mutations cause disease, we have employed an integrative modelling approach to study the interactions between tropomyosin and actin. Starting from the existing blocked state model, we identified a specific zone on the actin surface which is highly favourable to support tropomyosin sliding from the blocked/closed states to the open state. We then analysed the predicted actin-tropomyosin interface regions for the three states. Each quasi-repeat of tropomyosin was studied for its interaction strength and evolutionary conservation to focus on smaller surface zones. Finally, we show that the distribution of the known cardiomyopathy mutations of α-tropomyosin is consistent with our model. This analysis provides structural insights into the possible mode of interactions between tropomyosin and actin in the open state for the first time

    Structural attributes for the recognition of weak and anomalous regions in coiled-coils of myosins and other motor proteins

    No full text
    Abstract Background Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant. Findings We have updated our coiled-coil validation webserver, now called COILCHECK+, where new features were added to efficiently identify the strength of interaction at the interface region and measure the density of charged residues and hydrophobic residues. We have examined charged residues and hydrophobic ladders, using a new algorithm called CHAHO, which is incorporated within COILCHECK + server. CHAHO permits the identification of spatial charged residue patches and the continuity of hydrophobic ladder which stabilizes and destabilizes the coiled-coil structure. Conclusions The availability of such computational tools should be useful to understand the importance of spatial clustering of charged residues and the continuity of hydrophobic residues at the interface region of coiled-coil dimers. COILCHECK + is a structure based tool to validate coiled-coil stability; it can be accessed at http://caps.ncbs.res.in/coilcheckplus.</p

    Myosinome: A Database of Myosins from Select Eukaryotic Genomes to Facilitate Analysis of Sequence-Structure-Function Relationships

    Get PDF
    Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms ( Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae ) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome

    Genome-wide discovery for diabetes-dependent triglycerides-associated loci.

    No full text
    PurposeWe aimed to discover loci associated with triglyceride (TG) levels in the context of type 2 diabetes (T2D). We conducted a genome-wide association study (GWAS) in 424,120 genotyped participants of the UK Biobank (UKB) with T2D status and TG levels.MethodsWe stratified the cohort based on T2D status and conducted association analyses of TG levels for genetic variants with minor allele count (MAC) at least 20 in each stratum. Effect differences of genetic variants by T2D status were determined by Cochran's Q-test and we validated the significantly associated variants in the Mass General Brigham Biobank (MGBB).ResultsAmong 21,176 T2D and 402,944 non-T2D samples from UKB, stratified GWAS identified 19 and 315 genomic risk loci significantly associated with TG levels, respectively. Only chr6p21.32 exhibited genome-wide significant heterogeneity (I2 = 98.4%; pheterogeneity = 2.1x10-15), with log(TG) effect estimates of -0.066 (95%CI: -0.082, -0.050) and 0.002 (95%CI: -0.002, 0.006) for T2D and non-T2D, respectively. The lead variant rs9274619:A (allele frequency 0.095) is located 2Kb upstream of the HLA-DQB1 gene, between HLA-DQB1 and HLA-DQA2 genes. We replicated this finding among 25,137 participants (6,951 T2D cases) of MGBB (pheterogeneity = 9.5x10-3). Phenome-wide interaction association analyses showed that the lead variant was strongly associated with a concomitant diagnosis of type 1 diabetes (T1D) as well as diabetes-associated complications.ConclusionIn conclusion, we identified an intergenic variant near HLA-DQB1/DQA2 significantly associates with decreased triglycerides only among those with T2D and highlights an immune overlap with T1D

    Patient experience and perceived acceptability of whole-body magnetic resonance imaging for staging colorectal and lung cancer compared with current staging scans: a qualitative study

    No full text
    OBJECTIVE: To describe the experience and acceptability of whole-body magnetic resonance imaging (WB-MRI) staging compared with standard scans among patients with highly suspected or known colorectal or lung cancer. DESIGN: Qualitative study using one-to-one interviews with thematic analysis. SETTING: Patients recruited from 10 hospitals in London, East and South East England between March 2013 and July 2014. PARTICIPANTS: 51 patients (31 male, age range 40-89 years), with varying levels of social deprivation, were recruited consecutively from two parallel clinical trials comparing the diagnostic accuracy and cost-effectiveness of WB-MRI with standard scans for staging colorectal and lung cancer ('Streamline-C' and 'Streamline-L'). WB-MRI was offered as an additional scan as part of the trials. RESULTS: In general WB-MRI presented a greater challenge than standard scans, although all but four patients completed the WB-MRI. Key challenges were enclosed space, noise and scan duration; reduced patient tolerance was associated with claustrophobia, pulmonary symptoms and existing comorbidities. Coping strategies facilitated scan tolerance and were grouped into (1) those intended to help with physical and emotional challenges, and (2) those focused on motivation to complete the scan, for example focusing on health benefit. Our study suggests that good staff communication could reduce anxiety and boost coping strategies. CONCLUSIONS: Although WB-MRI was perceived as more challenging than standard scans, it was sufficiently acceptable and tolerated by most patients to potentially replace them if appropriate. TRIAL REGISTRATION NUMBER: ISRCTN43958015 and ISRCTN50436483

    Whole genome sequence analysis of blood lipid levels in \u3e66,000 individuals

    No full text
    Blood lipids are heritable modifiable causal factors for coronary artery disease. Despite well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and interpretation of clinical significance. Among 66,329 ancestrally diverse (56% non-European) participants, we associate 428M variants from deep-coverage WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with blood lipids through analysis of common and rare coding variants. We discover several associated rare non-coding variants, largely at Mendelian lipid genes. Notably, we observe rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for blood lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids
    corecore